Answer:
13.4g
Explanation:
we know that:
1 mole = 6.02 × 10²³ atoms
make the unknown number of moles = x
x = 7.1 × 10²² atoms
putting them both together:
1 mole = 6.02 × 10²³ atoms
x = 7.1 × 10²² atoms
Cross multiply:
6.02 × 10²³ x = 7.1 × 10²²
divide both sides by 6.02 × 10²³


we now have the number of moles of Al₂CO₃
to calculate the grams (mass):


add up all of the atomic masses of Al₂CO₃ to calculate relative formula mass:
(27 × 2) + 12 + (16 × 3) = 114
the grams (mass) of Al₂CO₃:

H2SO4 + 2KOH ---> K2SO4 + 2H2O
:)
Ecell = E°cell - RT/vF * lnQ
R is the gas constant: 8.3145 J/Kmol
T is the temperature in kelvin: 273.15K = 0°C, 25°C = 298.15K
v is the amount of electrons, which in your example seems to be six (I'm not totally sure)
F is the Faradays constant: 96485 J/Vmol (not sure about the mol)
Q is the concentration of products divided by the concentration of reactants, in which we ignore pure solids and liquids: [Mg2+]³ / [Fe3+]²
Standard conditions is 1 mol, at 298.15K and 1 atm
To find E°cell, you have to look up the reduction potensials of Fe3+ and Mg2+, and solve like this:
E°cell = cathode - anode
Cathode is where the reduction happens, so that would be the element that recieves electrons. Anode is where the oxidation happens, so that would be the element that donates electrons. In your example Fe3+ recieves electrons, and should be considered as cathode in the equation above.
When you have found E°cell, you can just solve with the numbers I gave you.
V) the amount of sugar in the solution
C) whether the sugar is stirred
V) the temperature of the solution
C) the type of solute added
C) the type of solvent used
NP.
Answer:
When two forces acting on an object are of similar size but acting in opposite directions, we say they are forces of balance. If the forces on an object are balanced (or if there are no forces acting on it), this is what happens: the object stays stationary