1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
15

Because angular momentum is conserved, an ice-skater who throws her arms out will

Physics
1 answer:
ki77a [65]3 years ago
8 0
This is an example of conservation of angular momentum.

The ice skater will rotate more slowly because her arms would be considered the outside torque that is impacting her constant angular momentum.

So, an ice-skater who throws her arms out will rotate more slowly.
You might be interested in
A record turntable is rotating at 33 rev/min. A watermelon seed is on the turntable 4.4 cm from the axis of rotation. (a) Calcul
romanna [79]

Answer:

a) a =0.53 m/s²

b) μ=0.054

c) μ = 0.068

Explanation:

a) If we assume that the turntable is rotating at a constant speed, the only force acting on the seed parallel to the surface, which keeps it  from following a straight line trajectory, is the centripetal force.

So, we can apply Newton's 2nd Law to the seed in this way:

Fnet = m*a = m*ac = m*ω²*r

We have the value of the angular speed, ω, in rev/min, so it is advisable to convert it to rad/sec, as follows:

ω = 33 rev/min*(1 min/60 sec)*(2*π rad/ 1 rev) = 11/10*π rad/sec

So, replacing in (1), we can solve for ac, as follows:

ac = ω²*r = (11/10)²*π²*0.044 m = 0.53 m/s²

b) Now, the centripetal force that we found above, is not a new type of force, it must be a force that explains the behavior of the seed.

As the seed does not slip, the only force acting  on it parallel to the surface, is the static  friction force, which has a maximum value, as follows:

Ff = μ*N

As there is no movement in the vertical direction, this means that the normal force must be equal and opposite to Fg, so we can write the expression for Ff as follows:

Ff = μ*m*g

Now, this force is no other than centripetal force, so we can write this equation:

Ff  = Fc ⇒ μ*m*g = m*ac

⇒ μ*g = ac

Solving for μ:

μ = ac/g = 0.53 m/s² / 9.8 m/s² = 0.054

c) During the acceleration period, added to the centripetal acceleration, as the angular speed is not constant, we will have also an angular acceleration, γ , which we can get as follows:

γ = Δω/Δt = (11/10)*π / 0.37 s = 9.34 rad/sec²

By definition of angular acceleration, there exists a fixed  relationship between the angular acceleration and the tangential acceleration (same as the one between angular and tangential speed), as follows:

at = γ*r = 9.34 rad/sec²*0.044 m = 0.41 m/s

When the turntable has reached to its maximum angular velocity, it will have also the maximum value of the centripetal acceleration, which we have just found out.

So, the magnitude of the total acceleration (at the moment of maximum acceleration) as they are perpendicular each  other) , is given by the following expression:

a = √(ac)²+(at)² = 0.67 m/s²

Now, as friction force opposes to the relative movement between surfaces (the seed and the turntable), it shall be larger than the product of the mass times the total acceleration, acting along  the same action line, so we can say:

Ffmin = μ*m*g = m*a

⇒ μmin = a/g = 0.67 m/s²/9.8 m/s² = 0.068

5 0
3 years ago
What is newton's 3rd law of physics ​
ValentinkaMS [17]

Answer:

His third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal and opposite force on object A.

4 0
3 years ago
A person is initially driving a car east down a straight road. the magnitude of the instantaneous acceleration is decreasing wit
Alexxandr [17]
By definition, acceleration is the change in velocity per change of time. As time passes by, the time increases in value. So, when the acceleration is decreasing while the time is increasing, then that means that the change of velocity is also decreasing with time. So, optimally, the initial velocity and the velocity at any time are very relatively close to each other,
4 0
3 years ago
Read 2 more answers
Two objects of the same size are both perfect blackbodies. One has a temperature of 3000 K, so its frequency of maximum emission
bija089 [108]

Answer:

a) The colder body (3000k), b) hearter body c) 12000K body

Explanation:

This exercise should know the power emitted by the objects and the distribution of this emission in the energy spectrum, for this we will use Stefan's laws and that of Wien's displacement

Stefan's Law                     P = σ A e T⁴

Wien displacement law   λ T = 2,898 10⁻³ m K

Let's calculate the power emitted for each object.

As they are perfect black bodies e = 1, they also indicate that they have the same area

T = 3000K

       P₁ = σ A T₁⁴

T = 12000K

       P₂ = σ A T₂⁴

       P₂ / P₁ = T₂⁴ / T₁⁴

       P₂ / P₁ = (12000/3000)⁴

       P₂ / P₁ = 256

This indicates that the hottest body emission is 256 times the coldest body emission.

Let's calculate the maximum emission wavelength

Body 1

T = 3000K

       λ T = 2,898 10-3

       λ₁ = 2.89810-3 / T

       λ₁ = 2,898 10-3 / 3000

       λ₁ = 0.966 10-6 m

      λ₁ = 966 nm

T = 12000K

      λ₂ = 2,898 10-3 / 12000

      λ₂ = 0.2415 10-6 m

      λ₂ = 214 nm

a) The colder body (3000k) emits more light in the infrared, since the emission of the hot body is at a minimum (emission tail)

b) The two bodies have emission in this region, the body of 3000K in the part of rise of the emission and the body to 12000K in the descent of the emission even when this body emits 256 times more than the other, so this body should have the highest broadcast in this area

c) The emission of the hottest 12000K body is mainly in UV

d) The hottest body emits more energy in UV and visible

e) No body has greater emission in all zones

5 0
3 years ago
Match the terms to the correct descriptions.
LenaWriter [7]

1. Energy Conversion

2. Light Energy

3. Mechanical Energy

4. Kinetic Energy

5. Potential Energy

6. Sound Energy

7. Electrical Energy

8. Chemical Energy

9. Thermal Energy

10. Nuclear energy

Hope that helps u!

:)

8 0
3 years ago
Other questions:
  • Describe how evaporation relates to heat regulation in your body
    15·1 answer
  • PLEASE HURRY!
    6·2 answers
  • What are the basic properties of matter
    7·2 answers
  • A spherical balloon is partially blown up and its surface area is measured. More air is then added, increasing the volume of the
    13·1 answer
  • Find the uncertainty in a calculated electrical potential difference from the measurements of current and resistance. Electric p
    9·1 answer
  • A 2,500 kg car traveling to the north is slowed down uniformly from 20.0 m/s by a 6,250 N braking force acting opposite the car'
    7·1 answer
  • During nuclear fission, great amounts of energy are produced from
    8·2 answers
  • Name any three natural phenomena​
    9·1 answer
  • You know that Alfred Wegener’s ideas were not immediately accepted. What evidence was found that convinced his contemporaries (p
    10·1 answer
  • Martha (50 kg) is attracted to Stewart (70 Kg) who sits 4 m away. What is the gravitational attraction between them? G=6.67 x 10
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!