1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lubov Fominskaja [6]
3 years ago
12

A bomb of mass 6kg initially at rest explodes into two fragments of masses 4kg and2kg respectively. If the greater mass moves wi

th a velocity of 5m_s, find the velocity of 2kg mass​
Physics
1 answer:
Katen [24]3 years ago
7 0

Answer:

v = 10 [m/s]

Explanation:

The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

P=m*v\\

where:

P = momentum [kg*m/s]

m = mass = 4 [kg]

v = velocity = 5 [m/s]

Now the momentum:

P=4*5\\P=20[kg*m/s]

This same momentum is equal for the other mass, in this way we can find the velocity.

P=m*v\\20=2*v\\v=10[m/s]

You might be interested in
An object moving at a constant velocity will always have a
SVETLANKA909090 [29]

Answer:

It will always have a zero acceleration

8 0
3 years ago
Read 2 more answers
You toss a conductive open ring of diameter d = 1.75 cm up in the air. The ring is flipping around a horizontal axis at a rate o
Mama L [17]

Answer:

The maximum emf induced in the ring

= (2.882 × 10⁻⁷) V

Explanation:

According to the law of electromagnetic induction, the emf induced in the ring is given by

E = N BA w sin wt

The maximum emf induced is

E = N BA w

B = 30.5 μT = (30.5 × 10⁻⁶) T

A = (πD²/4)

D = 1.75 cm = 0.0175 m

A = (π×0.0175²/4) = 0.000240625 m²

Nw = 2π × 6.25 = 39.29 rad/s

E = 30.5 × 10⁻⁶ × 0.000240625 × 39.29

E = (2.882 × 10⁻⁷) V

Hope this Helps!!!

8 0
3 years ago
As viewed from above in this picture, what direction will the current be in the coil of wire that will cause the loop to rotate
Gala2k [10]

Answer:

When viewed from above, the current in the coil should point towards the top-right corner of the picture.

Explanation:

The current in this coil have only two possible directions: clockwise or counter-clockwise. However, since the diagram shows the coil from above, not from a cross-section, just saying clockwise or counter-clockwise might be ambiguous. The statement that the current is directed towards the top-right corner of the picture is equivalent to saying that when viewed from the lower-right corner of this diagram, the current in the coil is moving clockwise.

Note that at the center of this picture, the current is parallel to the magnetic field- there will be no force on the coil at that position. On the other hand, (also when viewed from above,) at the top-right corner and the lower-left corner of the coil, the current in the coil will be perpendicular to the magnetic field. That's where the force on the coil will be the strongest.

With that in mind, apply the right-hand rule to find the direction of the force on the coil in each of the two possibilities.

Assume that when viewed from above, the current is flowing towards the top-right corner of the picture. Consider the wire near the top-right corner of this coil (as viewed above on this picture.) The current will be going into the picture into the magnetic field. By the right-hand rule, the current on the wire near that point should be pointing towards the bottom of this picture. (Point fingers on the right hand in the direction of the current I. Rotate the right hand such that when curling the fingers, they point in the direction of the magnetic field B. The direction of the right thumb should now point in the direction of the force on the wire F.)

Based on the same assumption, the current in the wires near the bottom left corner of this coil will be pointing out of the picture. By the right hand rule, the magnetic force on the coil in that region should be pointing towards the top of this picture. Combing these two forces, the coil would indeed be rotating around the center of this picture in the direction shown in the diagram.

It can also be shown that if the current points towards the bottom left corner of the picture when viewed from above, the coil will be rotating about the center of this picture in the opposite direction.

7 0
3 years ago
A small airplane has to reach a speed if 27.8 m/s to takeoff. It can accelerate at 2.00 m/s^2. What is the minimal length of run
pickupchik [31]
Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s

3 0
3 years ago
Your bedroom gets direct sunlight through a window during the hottest part of the day. You ask your mom to turn down the thermom
ycow [4]
I want to say its cooled by reflection because of the foil, sun reflects off of the foil back into the atmosphere. I don't think it's conduction because I have the foil on my windows and it's never warm to the touch. it's not a liquid so I don't believe it's convection. The foil reflects the radiation so I don't think it's b, c or d. so I wanna say A but I'm not 100% sure
6 0
3 years ago
Other questions:
  • Several paper clips dangle from the north pole of a magnet. The induced pole in the bottom of the lowermost paper clip is a
    14·1 answer
  • An object's potential energy is set it cannot change is this true
    12·2 answers
  • matt built a boat with a mass of 320g. When he tried it out, he found that it displaced 260g of water. did the boat sink or floa
    12·1 answer
  • How to understand physics
    5·1 answer
  • Which boxes represent pure substances?
    15·2 answers
  • dopasuj wartości pracy z ramki do przedstawionych sytuacji a następnie wyraź tę pracę w dżulach uwaga jedna wartość pracy nie bę
    15·2 answers
  • A particle moving along the y-axis has the potential energy u =4y3j, where y is in m. what is the y-component of the force on th
    13·1 answer
  • Hey anyone here I'm ban 2 mint ago my I'd is aron7 I talk to Rachel anybody present therw​
    11·2 answers
  • Please sb help me fr
    12·2 answers
  • two charges experience exert a force of 1n on each other when they are 1m apart. what force will these charges experience if the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!