Answer:
d = 265 ft
Therefore, an object fall 265 ft in the first ten seconds after being dropped
Explanation:
This scenario can be represented by an arithmetic progression AP.
nth term = a + nd
Where a is the first term given as 2.63 ft.
d is the common difference and is given as 5.3ft.
n is the particular second/time.
To calculate how far the object would fall in the first 10 seconds, we can derive it using the sum of an AP.
d = nth sum = (n/2)(2a+(n-1)d)
Where n = 10 seconds
a = 2.65 ft
d = 5.3 ft
Substituting the values we have;
d = (10/2)(2×2.65 + (10-1)5.3)
d = 265 ft
Therefore, an object fall 265 ft in the first ten seconds after being dropped
I think it’s mechanical waves..
1) The type of heat transfer is radiation (ie the sun's rays)
2) Not entirely sure what you mean but it is possible with this equation: KE = 3/2kT with k being the Boltzmann's Constant and T the temperature in Kelvins
3) True? Not really a question.
4) This would be emissivity
5) Thermal Energy
6) Celsius
7) A thermometer
F=ma
For the first (10kg) cart,
12=10a
a=6/5 m/s^2 to the left
For the second (5kg) cart,
8=5a
a=8/5 m/s^2 to the left
Therefore, the lighter (5kg) cart experiences a greater acceleration.