The answer is:
B. <span>X: Work is done to the system and temperature increases.
Y: Work is done by the system and temperature decreases.</span>
Answer:
The water is flowing at the rate of 28.04 m/s.
Explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure, = 2.95 atm
Atmospheric pressure, = 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;
where;
P₁ =
P₂ =
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;
where;
is the density of seawater = 1030 kg/m³
Therefore, the water is flowing at the rate of 28.04 m/s.
Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².
The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is
<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²
<em>F</em> ≈ 9.81 N
Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.
This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of
<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²
i.e. 1/4 of the weight on Earth, which would be about 2.45 N.
Answer:
-11.11 degree Celsius
Explanation:
The change was 44 degree fanhereit
To 56 degree fanhereit
Therefore the temperature range can be calculated as follows
56-44
= 12 degree fanhereit to Celsius
= 12-32×5/9
= -20×5/9
= 100/9
= -11.11 degree Celsius
Explanation:
Before mitosis, the chromosomes are copied. They then coil up, and each chromosome looks like a letter X in the nucleus of the cell. The chromosomes now consist of two sister chromatids. Mitosis separates these chromatids, so that each new cell has a copy of every chromosome