The heat that is needed to raise the temperature of 78.4 g of aluminium from 19.4 °c to 98.6°c is 5600.77 j
<u><em>calculation</em></u>
Heat(Q) = mass(M) x specific heat capacity (C) x change in temperature(ΔT)
where;
Q=?
M = 78. 4 g
C=0.902 j/g/c
ΔT=98.6°c -19.4°c =79.2°c
Q is therefore = 78.4 g x 0.902 j/g/c x 79.2°c =5600.77 j
Answer:
5 moles of oxygen are required.
Explanation:
Given data:
Moles of O₂ required = ?
Moles of H₂ present = 10 mol
Solution:
Chemical equation:
O₂ + 2H₂ → 2H₂O
Now we will compare the moles of oxygen and hydrogen.
H₂ : O₂
2 : 1
10 : 1/2×10 = 5 mol
5 moles of oxygen are required.
The complete question is as follows: Which statement describes the way in which energy moves between a system reacting substances in the surroundings.
A) molecule Collisions transfer thermal energy between the system and its surroundings
B) The thermal energy of the system and it’s surroundings increase
C) The potential energy of the system and it’s surroundings increases
D) molecular collisions create energy that is then released into the surroundings
Answer: The statement, molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Explanation:
When there will occur an increase in kinetic energy of molecules then there will occur more number of collisions.
When kinetic energy between these molecules tends to decrease then they will release heat energy into their surroundings.
As a result, it means that molecule collisions transfer thermal energy between the system and its surroundings.
Thus, we can conclude that the statement molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
This is a combination reaction. Look at the 2 elements on left and a compound on the right.
Here is the link to the answer: