The mass of the liquid is 280 g.
Mass = 200 mL × (1.4 g/1 mL) = 280 g
Answer:
internal fertilization
Explanation:
Internal fertilization enhances the fertilization of eggs by a specific male. Fewer offspring are produced through this method, but their survival rate is higher than that for external fertilization.
Through manipulation of equations, we are able to obtain the equation:
![-pOH= log [ OH^{-}]](https://tex.z-dn.net/?f=-pOH%3D%20log%20%5B%20OH%5E%7B-%7D%5D%20)
Then we can transform the equation into:
![[ OH^{-}]= 10^{-pOH}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%3D%2010%5E%7B-pOH%7D%20%20)
Then we are able to plug in the pOH and directly get [OH-]:
![[ OH^{-}] = 10^{-6.48}](https://tex.z-dn.net/?f=%5B%20OH%5E%7B-%7D%5D%20%3D%2010%5E%7B-6.48%7D%20)
Answer: The fourth material that is added to the blast furnace is HOT AIR which provides OXYGEN for used for combustion of carbon (Coke).
Explanation:
Iron is the second most abundant metal found in the earth's crust after aluminium. It is not found in the free metallic state but are extracted from rocks which are rich in iron that contains other materials. These are known are iron ores and the most common iron ores are haematite ( Fe2O3).
Iron can be extracted from its ore with the used of blast furnace. The materials used for extraction of iron includes:
--> Coke
--> haematite( iron ore)
--> limestone and
--> Hot air.
The iron ore is first roasted in air so that iron(III)oxide is produced. The iron(III)oxide is then mixed with coke and limestone and heated to a very high temperature. Hot air is introduced into it from the bottom of the furnace. The coke is oxidizes the the oxygen in the hot air blast to liberate carbondioxide.