<span>Stoichiometry deals with the quantitative measurement of reactants and products in a chemical reaction. Let suppose you are given with following reaction;
A + 2 B </span>→ 3 C
According to this reaction 1 mole of A reacts with 2 moles of B to produce 3 moles of C. Now using the concept of mole one can easily measure the amount of reactants reacted and the amount of product formed, as...
1 Mole Exactly equals 6.022 × 10²³ particles
1 Mole of Gas (at STP) exactly occupies 22.4 L Volume
1 Mole of any compound exactly equals the molar mass in grams
Therefore, <span>Stoichiometry is very helpful in quantitative analysis.</span>
Answer:
Molecular formula = C₁₂H₁₂O₄
Empirical formula is C₃H₃O.
Explanation:
Given data:
Mass of C = 91.63 g
Mass of H = 7.69 g
Mass pf O = 40.81 g
Molar mass of compound = 220 g/mol
Empirical formula = ?
Molecular formula = ?
Solution:
Number of gram atoms of H = 7.69 / 1.01 = 7.61
Number of gram atoms of O = 40.81 / 16 = 2.55
Number of gram atoms of C = 91.63 / 12 = 7.64
Atomic ratio:
C : H : O
7.64/2.55 : 7.61 /2.55 : 2.55/2.55
3 : 3 : 1
C : H : O = 3 : 3 : 1
Empirical formula is C₃H₃O.
Molecular formula:
Molecular formula = n (empirical formula)
n = molar mass of compound / empirical formula mass
Empirical formula mass = 3×12+ 3×1.01 +16 = 55.03
n = 220 / 55.03
n = 4
Molecular formula = 4 (empirical formula)
Molecular formula = 4 (C₃H₃O)
Molecular formula = C₁₂H₁₂O₄
Answer:
Light as a wave: Light can be described (modeled) as an electromagnetic wave. In this model, a changing electric field creates a changing magnetic field. This changing magnetic field then creates a changing electric field and BOOM - you have light. ... So, Maxwell's equations do say that light is a wave.
Explanation:
Hope this helps
1 mol of Br = 79.9 g
15.7 g / 79.9 g = 0.196 moles of atoms