(a) The nature of bond between A and B is an ionic bond.
(b) The two main properties of the ionic compounds are:
- Ionic Compounds have high boiling and melting points as they're very strong and require a lot of energy to break.
- The electrostatic forces of attraction between oppositely charged ions lead to the formation of ions.
(c) If the ionic compound is dissolved in water, the ions in the solid separate and disperse uniformly
<h3>What is an ionic compound?</h3>
Ionic compounds contain ions and are held together by the attractive forces among the oppositely charged ions.
An ionic bond is formed by the complete transfer of some electrons from one atom to another. The atom losing one or more electrons becomes a cation—a positively charged ion.
In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
When ionic compounds dissolve in water, the ions in the solid separate and disperse uniformly throughout the solution.
Learn more about the ionic bond here:
brainly.com/question/11527546
#SPJ1
Answer:
17.65 grams of O2 are needed for a complete reaction.
Explanation:
You know the reaction:
4 NH₃ + 5 O₂ --------> 4 NO + 6 H₂O
First you must know the mass that reacts by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction). For that you must first know the reacting mass of each compound. You know the values of the atomic mass of each element that form the compounds:
- N: 14 g/mol
- H: 1 g/mol
- O: 16 g/mol
So, the molar mass of the compounds in the reaction is:
- NH₃: 14 g/mol + 3*1 g/mol= 17 g/mol
- O₂: 2*16 g/mol= 32 g/mol
- NO: 14 g/mol + 16 g/mol= 30 g/mol
- H₂O: 2*1 g/mol + 16 g/mol= 18 g/mol
By stoichiometry, they react and occur in moles:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then in mass, by stoichiomatry they react and occur:
- NH₃: 4 moles*17 g/mol= 68 g
- O₂: 5 moles*32 g/mol= 160 g
- NO: 4 moles*30 g/mol= 120 g
- H₂O: 6 moles*18 g/mol= 108 g
Now to calculate the necessary mass of O₂ for a complete reaction, the rule of three is applied as follows: if by stoichiometry 68 g of NH₃ react with 160 g of O₂, 7.5 g of NH₃ with how many grams of O₂ will it react?

mass of O₂≅17.65 g
<u><em>17.65 grams of O2 are needed for a complete reaction.</em></u>
Answer:
All of the above
Explanation:
(I'm assuming you meant to put Australia in the options)
Australia is in the southern hemisphere and has its summer in December etc. and Winter in July etc.
China is in the northern hemisphere and has its summer in July etc and Winter in December etc.
Empirical formula is the simplest ratio of whole numbers of components in a compound
in 100 g of compound
C H O
mass 25.5 g 6.40 g 68.1 g
number of moles 25.5 g/12 g/mol 6.40 g/ 1 g/mol 68.1 g/ 16 g/mol
= 2.13 mol = 6.40 mol = 4.26 mol
divide by least number of moles
2.13/2.13 = 1 6.40/2.13 = 3.0 4.26/2.13 = 2.0
all rounded off
C - 1
H - 3
O - 2
empirical formula - CH₃O₂
Answer:
I'm not single, i have me, myself and my looks. ;)
Explanation:
I'M CRINGING AS I WRITE THIS-