Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772
Answer:
12.19 hours prior to discovery was the corpse placed in the desert.
Explanation:
Heat required for fly eggs to develop into first instar larvae = 
From the given,
Exposure time = 16 hrs
Temperature = 27 C

The day time exposed hours is 10 hrs.-(7.00am-5.00pm)

So, the extra heat = 427.2-378= 49.2
The addition heat divided by average temperature.
Average temperature = 22.4 C

So, the total time exposed is night time hours to day time hours.
= 10+2.19 = 12.19 hrs.
Therefore, 12.19 hours prior to discovery was the corpse placed in the desert.
The correct answer is species
Answer:
50 g Sucrose
Explanation:
Step 1: Given data
- Concentration of the solution: 2.5%
Step 2: Calculate the mass of sucrose needed to prepare the solution
The concentration of the solution is 2.5%, that is, there are 2.5 g of sucrose (solute) every 100 g of solution. The mass of sucrose needed to prepare 2000 g of solution is:
2000 g Solution × 2.5 g Sucrose/100 g Solution = 50 g Sucrose
Don’t eat or drink in labs
Dress for the lab; don’t wear open toed shoes
Dispose of lab waste properly
No horse play
Don’t taste or sniff things in the lab
Tire your hair back