Answer:
Gallium has Orthorhombic and forms ionic bonds with metals
Explanation:
The structure of gallium is Orthorhombic and it has a high neutron capture cross section. It is very stable in dry air but oxidizes in moist air. It reacts with oxygen to form Ga2O3. It has a valence of III. Its electronic configuration is
Ar 3d10 4s2 4p1
It is found in the 3A group of periodic table and it mostly forms ionic bonds with metal.
Answer:
Oxygen is a colorless, odorless, tasteless gas. It changes from a gas to a liquid at a temperature of -182.96°C (-297.33°F). The liquid formed has a slightly bluish color to it. Liquid oxygen can then be solidified or frozen at a temperature of -218.4°C (-361.2°F).
Answer: C) Non-metals can share pairs of electrons and form covalent bonds
Explanation: The principal reason why it is non-metals that can form covalent bonds is because of their electronegativities. Electronegativity is the tendency of an atom to attract electrons towards itself.
The participating atoms in a covalent bond have to be able to hold the shared electron in place & it is this attraction towards the centre of each participating atom that holds the electrons in place. Metals aren't electronegative, they don't attract electrons towards each other, they'd rather even push the electrons away from themselves (electropositive) to be stable. The closest concept of metals to shared electrons is in metallic bonding, where metals push and donate their valence electrons to an electron cloud which is free to move around the bulk of the metallic structure. But this is nowhere near the type of bonding that exist in covalent bonds.
The answer is potassium magnate
Answer:
2.5L [NaCl] concentrate needs to be 4.8 Molar solution before dilution to prep 10L of 1.2M KNO₃ solution.
Explanation:
Generally, moles of solute in solution before dilution must equal moles of solute after dilution.
By definition Molarity = moles solute/volume of solution in Liters
=> moles solute = Molarity x Volume (L)
Apply moles before dilution = moles after dilution ...
=> (Molarity X Volume)before dilution = (Molarity X Volume)after dilution
=> (M)(2.5L)before = (1.2M)(10.0L)after
=> Molarity of 2.5L concentrate = (1.2M)(10.0L)/(2.5L) = 4.8 Molar concentrate