Explanation:
Hardness test — Scratch the rock with a fingernail, a copper penny, a glass plate or nail, and a ceramic plate. Check your Guide to assign it a rating on the Mohs Scale of Hardness.
Color streak test — Test for the “color streak” of the minerals by rubbing the rock across the ceramic plate in the Mineral Test Kit, or across smooth
cement. Look up which colors indicate which minerals are present.
Magnetism test — Hold the magnet in the Mineral Test Kit near your rock. If there is a magnetic pull, it has a metal mineral in it.
Acidity test — Put vinegar in the bottle included in the Mineral Test Kit. Squeeze out a few drops on the rock. If it fizzes, it contains carbonate.
A quick and easy way to find out whether your diamond is real or fake: try fogging it up with your breath. If it clears up after one or two seconds, then your diamond is real, but if it stays fogged for three to four seconds chances are that you're looking at a fake.
Answer:
There’s a particular way of writing what’s in a molecule called a chemical formula. The chemical formulae for all the elements that form each molecule and uses a small number to the bottom right of an element’s symbol to stand for the number of atoms of that element. For example, the chemical formula for water is H 2 O.
Explanation:
Use the ideal gas formula-----> PV= nRT
P= 2.50 atm
V= 250 mL= 0.250 L
n= 0.100 moles
R= 0.0821 atmxL/molesxK
T= ?
T= PV/nR
T= (2.50 atm x 0.250 L) / (0.100 moles x 0.0821)= 76.1 K
Answer:
Observe odor, determine pH, determine density, determine boiling point
Explanation:
The correct procedures that would be best to use to determine whether a beaker contains only distilled water would be to observe the odor of the liquid in the beaker, determine the pH of the liquid, determine the density, and then determine the boiling point of the liquid.
<em>Water is generally odorless and has a pH of approximately 7 with a density of 1 kg/m3 and a boiling point of 100 </em>
<em>. If the liquid in the beaker ticks all these conditions, then it can be established to be only distilled water.</em>
Answer:
Half life = 1 / k[Ao]
Explanation:
From:
1/ [A] = kt + 1/ [Ao]
Isolating t on its own, we have:
kt = 1 / [A] - 1 / [Ao]
t = 1 / [Ao] / k
Re-arranging we have:
t = 1 / k [Ao]
The t represents the t=half life of the second order reaction and the formula can be re-written as:
t1/2 = 1 / k [Ao]
This is so because second order reaction decreases at a much faster rate than zero and first order reactions and there slopes decreases to zero at a much faster rate.