(-5,2) is located in the II quadrant because the x is negative and the y is positive.
(5,-5) is located in the IV quadrant because the x is positive and the y is negative.
(2,-5) is also located in the IV quadrant because the x is positive and the y is negative.
(-4,-5) is located in the III quadrant because both x and y are negative.
Answer:
<em>n = 0</em>
Step-by-step explanation:
- 6(n - 3) = 18
n - 3 = 18 ÷ ( - 6)
n - 3 = - 3 ⇒ <em>n = 0</em>
5/54 or approximately 0.092592593
There are 6^3 = 216 possible outcomes of rolling these 3 dice. Let's count the number of possible rolls that meet the criteria b < y < r, manually.
r = 1 or 2 is obviously impossible. So let's look at r = 3 through 6.
r = 3, y = 2, b = 1 is the only possibility for r=3. So n = 1
r = 4, y = 3, b = {1,2}, so n = 1 + 2 = 3
r = 4, y = 2, b = 1, so n = 3 + 1 = 4
r = 5, y = 4, b = {1,2,3}, so n = 4 + 3 = 7
r = 5, y = 3, b = {1,2}, so n = 7 + 2 = 9
r = 5, y = 2, b = 1, so n = 9 + 1 = 10
And I see a pattern, for the most restrictive r, there is 1 possibility. For the next most restrictive, there's 2+1 = 3 possibilities. Then the next one is 3+2+1
= 6 possibilities. So for r = 6, there should be 4+3+2+1 = 10 possibilities.
Let's see
r = 6, y = 5, b = {4,3,2,1}, so n = 10 + 4 = 14
r = 6, y = 4, b = {3,2,1}, so n = 14 + 3 = 17
r = 6, y = 3, b = {2,1}, so n = 17 + 2 = 19
r = 6, y = 2, b = 1, so n = 19 + 1 = 20
And the pattern holds. So there are 20 possible rolls that meet the desired criteria out of 216 possible rolls. So 20/216 = 5/54.