Answer:
I don't understand it.....
The name and strength of the force holding the block up is 50 N upward - Normal force.
The given parameters:
- <em>Mass of the block, m = 5 kg</em>
The weight of the block acting downwards due to gravity is calculated as follows;
W = mg
where;
- <em>g is acceleration due to gravity = 10 m/s²</em>
W = 5 x 10
W = 50 N <em>(</em><em>downwards</em><em>)</em>
Since the block is at rest, an a force equal to the weight of the block must be acting upwards. This force is known as normal reaction.
Fₙ = 50 N <em>(</em><em>upwards</em><em>)</em>
Thus, the name and strength of the force holding the block up is 50 N upward - Normal force.
Learn more about Normal force here: brainly.com/question/14486416
Its simple use formuila ,
PV=nRT
n,R is constant as the both have same moles.
so,
(p1v1)/T1 = (p2v2)/T2
so, 128.53338kpa
Answer:
-384.22N
Explanation:
From Coulomb's law;
F= Kq1q2/r^2
Where;
K= constant of Coulomb's law = 9 ×10^9 Nm^2C-2
q1 and q2 = magnitudes of the both charges
r= distance of separation
F= 9 ×10^9 × −7.97×10^−6 × 6.91×10^−6/(0.0359)^2
F= -495.65 × 10^-3/ 1.29 × 10^-3
F= -384.22N
Answer:
The energy stored is 1.4 x 10^-9 J.
Explanation:
Side of square, L = 10 cm = 0.1 m
Distance, d = 2 mm = 0.002 m
Electric field, E = 4000 V/m
The energy stored in the capacitor is

The capacitance is given by
