1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
14

What is BEST to say about a runner who is running at a constant velocity? A. Their acceleration is positive. B. Their accelerati

on is negative. C. Their acceleration is zero. D. Their acceleration cannot be determined.
Physics
2 answers:
Leto [7]3 years ago
4 0
<span>The question is asking us what is BEST to say about a runner who is running at a constant velocity? A constant velocity (=speed) means that they are not getting faster or slower - they are running exactly as fast all the time. This meanst that their speed does not change, so their change of speed is equal to 0. A change of speed is called acceleration so their C. Their acceleration is zero. - C is the correct answer. </span>
IRINA_888 [86]3 years ago
3 0

the correct answer is C.


You might be interested in
A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl
Elena-2011 [213]

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

6 0
4 years ago
What is the distance an object would be from Earth if its parallax were one arcsecond?
ZanzabumX [31]
The correct answer is (a.) a parsec. A parsec is a distance an object would be from Earth if its parallax were one arcsecond. This unit of measurement is usually used in astronomy which makes it easier for astronomers to calculate or measure in space accurately. 
8 0
3 years ago
Describe the importance of conservative forces to conservation of energy.
qwelly [4]
Not sure but just coming to say good luck and take your time
6 0
3 years ago
You wiggle a string,that is fixed to a wall at the other end, creating a sinusoidalwave with a frequency of 2.00 Hz and an ampli
FinnZ [79.3K]

Answer:

Explanation:

A general wave function is given by:

f(x,t)=Acos(kx-\omega t)

A: amplitude of the wave = 0.075m

k: wave number

w: angular frequency

a) You use the following expressions for the calculation of k, w, T and λ:

\omega = 2\pi f=2\pi (2.00Hz)=12.56\frac{rad}{s}

k=\frac{\omega}{v}=\frac{12.56\frac{rad}{s}}{12.0\frac{m}{s}}=1.047\ m^{-1}

T=\frac{1}{f}=\frac{1}{2.00Hz}=0.5s\\\\\lambda=\frac{2\pi}{k}=\frac{2\pi}{1.047m^{-1}}=6m

b) Hence, the wave function is:

f(x,t)=0.075m\ cos((1.047m^{-1})x-(12.56\frac{rad}{s})t)

c) for x=3m you have:

f(3,t)=0.075cos(1.047*3-12.56t)

d) the speed of the medium:

\frac{df}{dt}=\omega Acos(kx-\omega t)\\\\\frac{df}{dt}=(12.56)(1.047)cos(1.047x-12.56t)

you can see the velocity of the medium for example for x = 0:

v=\frac{df}{dt}=13.15cos(12.56t)

7 0
3 years ago
What does it mean, if the specific gravity of an object is less than one?​
JulijaS [17]

Answer:

Specific gravity can be used to determine if an object will sink or float on water. ... If an object or liquid has a specific gravity greater than one, it will sink. If the specific gravity of an object or a liquid is less than one, it will float.

hope this helps, have a great day/night, and stay safe!

3 0
3 years ago
Read 2 more answers
Other questions:
  • One way to decrease the inertia of an object is to
    8·2 answers
  • A ball is dropped off the side of a bridge.<br> After 1.55 s, how far has it fallen?
    11·1 answer
  • A force of 350N is applied to a body. If the work done is 40kJ, what is the distance through which the body moved?
    7·1 answer
  • A person pushes horizontally on a heavy box and slides it across the level floor at constant velocity. The person pushes with a
    12·1 answer
  • Determine the values of mm and nn when the following mass of the Earth is written in scientific notation: 5,970,000,000,000,000,
    8·1 answer
  • Riddle of the day<br><br> What gets wet while drying?
    11·2 answers
  • An echo is a reflection of sound against another surface. Suppose you are standing on one side of a canyon and you
    8·1 answer
  • Formula for calculating work done in machines ​
    13·1 answer
  • Pedro is planning to model how changes in weather affect evaporation from lakes for his first experiment he wants to test how hu
    5·1 answer
  • Anders suffered a shock when his electric radio dropped into the bathtub--while anders was taking a bath. Anders argued that he
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!