Answer:
35.3 N
Explanation:
U = 0, V = 0.61 m/s, s = 0.39 m
Let a be the acceleration.
Use third equation of motion
V^2 = u^2 + 2 as
0.61 × 0.61 = 0 + 2 × a × 0.39
a = 0.477 m/s^2
Force = mass × acceleration
F = 74 × 0.477 = 35.3 N
Answer:
Explanation:
If we assume there is a sharp boundary between the two masses of air, there will be a refraction. The refractive index of each medium will depend on the relative speeds of light.
n = c / v
If light travels faster in warmer air, it will have a lower refractive index
nh < nc
Snell's law of refraction relates angles of incidence and refracted with the indexes of refraction:
n1 * sin(θ1) = n2 * sin(θ2)
sin(θ2) = sin(θ1) * n1/n2
If blue light from the sky passing through the hot air will cross to the cold air, then
n1 = nh
n2 = nc
Then:
n1 < n2
So:
n1/n2 < 1
The refracted light will come into the cold air at angle θ2 wich will be smaller than θ1, so the light is bent upwards, creating the appearance of water in the distance, which is actually a mirror image of the sky.
Answer:
Continental polar (cP) or continental arctic (cA) air masses are cold, dry, and stable. These air masses originate over northern Canada and Alaska as a result of radiational cooling. Maritime polar (mP) air masses are cool, moist, and unstable.
Explanation:
The difference between radiation and conduction is that radiation is described as he transfer of heat energy by electromagnetic waves without involving particles. Conduction is described as the flow of heat from one solid to another, using a hot knife as an example.
The rms speed of the molecules of gas A is twice that of gas B. The molecular mass of A is one fourth to that of B.
Answer: Option B
<u>Explanation:</u>
Measuring the speed of particles at a given point in time results in a large distribution of values. Some molecules can move very slowly, others very fast, and because they are still moving in different directions, the speeds may be zero. (Velocity, vector quantity that corresponds to the speed and direction of the molecule.)
To correctly estimate the average velocity, you must take the squares of the mean velocity and take the square root of this value. This is known as the root mean square (rms) velocity and is shown as follows:

Where,
M – Gas’s molar mass
R – Molar mass constant
T – Temperature (in Kelvin)
Given data is rms speed for gas molecule A is twice that of gas molecule B. So,

Therefore, equating the molecule’s rms speed formula for both A and B,

On squaring both sides, we get,

By solving the above equations, we get,
