Answer:
18.9 m.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 70 km/h
Height (h) =?
Next, we shall convert 70 km/h to m/s. This can be obtained as follow:
3.6 km/h = 1 m/s
Therefore,
70 km/h = 70 km/h × 1 m/s / 3.6 km/h
70 km/h = 19.44 m/s
Finally, we shall determine the height. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 19.44 m/s
Acceleration due to gravity (g) = 10 m/s²
Height (h) =?
v² = u² + 2gh
19.44² = 0² + (2 × 10 × h)
377.9136 = 0 + 20h
377.9136 = 20h
Divide both side by 20
h = 377.9136 / 20
h = 18.9 m
Thus, the car will fall from a height of 18.9 m
Answer:
14.2 m/s
Explanation:
Given data:
Speed of the stream, v₁ = 7.1 m/s
let the cross section area at initial point be A₁
now area at the second point, A₂ = (1/2)A₁ = 0.5A₁
now, from the continuity equation, we have
A₁v₁ = A₂v₂
where, v₂ is the velocity at the narrowed portion
thus, on substituting the values, we get
A₁ × 7.1 = 0.5A₁ × v₂
or
v₂ = 14.2 m/s
They begin to adapt into their new location. They then end up having adaptations to help them survive.
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:
