Answer:
Magnitude = 4.056 m
Direction = 42.3⁰
Explanation:
The vector is resolved in terms of the vertical and horizontal components. Let's look each of these separately.
The vector 4.40 is directed East. This automatically becomes a horizontal component.
But we know that there is a vector 3.40 North West. The angle the vector makes with the horizontal is 61⁰.
Resolving the vectors should yield the horizontal and vertical components:
Horizontal components
The first component is 4.40 m
The second one is derived by resolving 3.40 to the horizontal like this 3.40 × - cos 61⁰ = -1.648 m
Adding the horizontal component gives 4.40 m + ( -1.648 m) = 2.752 m
Vertical components
Resolve 3.40 with the angle 61⁰ like this: vertical comp = 3.41 × sin 61
= 2.98 m
The magnitude is given by √[(2.98)²+ (2.752)²] = 4.056 m Ans
The direction us given by tan⁻¹ (2.98/2.752) = 42.3⁰ Ans
Density + mass / volume = 42 / 22 = 1.909 kg / m^3 ( to the nearest thousandth)
Answer: a. air pollution
c. hazardous wastes
d. potential reactor accident
e. water pollution
A nuclear energy is produced in a thermal power plant. A nuclear energy is produced in a nuclear reactor. In nuclear reactor nuclear fission reactions takes place in which an atoms absorbs energy from radiations and undergo fission and produces energy in the form of high intensity radiations along with heat. Although the fission reactions takes place in a nuclear reactor in a controlled way so that the radiation may not leak out from the reactor. The accidentally leak out radiations or explosion or bursting of the reactor due to uncontrolled thermal energy production can result in air pollution as the leak out air will cause bursting effects which will contaminate the air.
The nuclear waste are radioactive and are non-biodegradable these wastes are disposed off deep in geospheres and in water. They have potential to contaminate both land and water. Radioactive wastes can cause mutations in the genome of the organisms exposed to these wastes which generate deadly diseases and disorders. Therefore, these wastes are hazardous.
The energy of the ski lift at the base is kinetic energy:

where m is the mass of the ski lift+the people carried, and

is velocity at the base.
As long as the ski lift goes upward, its velocity decreases and its kinetic energy converts into potential energy. Eventually, when it reaches the top, its final velocity is v=0, so no kinetic energy is left and it has all converted into gravitational potential energy, which is

where

and h is the height at the top of the hill.
So, since the total energy must conserve, we have

and so

from which we find the height:
Answer:
6 light years = 57 million km
Explanation:
Given;
A light year = 9.5 million km
To calculate how far is 6 light years;
6 light years = 6 × 1 light year = 6 × 9.5 million km
6 light years = 57 million km