None of these is a Physics problem. The numbers, and the fractions that
they appear in, might have come from Physics problems, but these are
nothing more than arithmetic exercises, and they can be whipped out
in a hurry with a little bit of fancy calculator work. You don't have to
know any Physics in order to answer any of these.
The first one is 2.7 x 10⁻²⁴ Newton.
Accelerating at 9.8 m/s² means that every second, the speed is 9.8 m/s faster than it was a second earlier. It's not important to the problem, but this number (9.8) happens to be the acceleration of gravity on Earth.
1% of the speed of light = (300,000,000 m/s) / 100 = 3,000,000 m/s .
Starting from zero speed, moving (9.8 m/s) faster every second,
how long does it take to reach 3,000,000 m/s ?
(3,000,000 m/s) / (9.8 m/s²) = 306,122 seconds .
(That's 5,102 minutes.)
(That's 85 hours.)
(That's 3.54 days.)
Speed at the beginning . . . zero .
Speed at the end . . . 3,000,000 m/s
Average speed . . . . . 1,500,000 m/s
Distance = (average speed) x (time)
= (1,500,000 m/s) x (306,122 sec) = 4.592 x 10¹¹ meters
= 459 million kilometers
That's like from Earth
to Sun
to Earth
to Sun.
Answer:according to newtons third law for every action force there is an equal in size and opposite in direction reaction force forces always comes in pairs
Explanation:
Answer:
it would take 3.26 seg for the stone to fall to the water
Explanation:
If we ignore air friction then:
h=h₀ + v₀*t -1/2*g*t²
where
h= coordinates of the stone in the y axis ( height of the stone relative to the surface of the water )
h₀ = initial coordinates of the stone ( height of the cliff relative to the surface of the water = 52 m )
v₀ = initial <u>vertical </u>velocity = 0 ( since the ball is kicked horizontally , has only initial horizontal velocity , and has 0 vertical velocity )
t = time to reach a height h
g = gravity = 9.8 m/s²
since v₀ =0
h= h₀ - 1/2*g*t²
h₀ - h = 1/2*g*t²
t= √[2(h₀ - h)/g]
when the stone hits the ground h=0 ( height=0) , then replacing values
t=√[2(h₀ - h)/g]=√[2(52 m- 0 m )/(9.8m/s²)] = 3.26 seg
t= 3.26 seg
it would take 3.26 seg for the stone to fall to the water
Based on the information in the graph, the atom which is listed below is the most stable would be A. Oxygen-16 (O-16).