Answer:
if the frequency of the wave if tripled then period of wave gets tripled
No scientific testing has been made to check for ion transfer, and the claims are purely empirical. Also, nine out of ten people is hardly a representative sample, and the people can claim whatever they want since "feeling" is subjective. This is most likely a pseudoscientific claim, made to sound legitimate to consumers. The best answer is choice D.
Answer:
a) a = 3.06 10¹⁵ m / s
, b) F= 1.43 10⁻¹⁰ N, c) F_total = 14.32 10⁻²⁶ N
Explanation:
This exercise will average solve using the moment relationship.
a ) let's use the relationship between momentum and momentum
I = ∫ F dt = Δp
F t = m
- m v₀
F = m (v_{f} -v₀o) / t
in the exercise indicates that the speed module is the same, but in the opposite direction
F = m (-2v) / t
if we use Newton's second law
F = m a
we substitute
- 2 mv / t = m a
a = - 2 v / t
let's calculate
a = - 2 4.59 10²/3 10⁻¹³
a = 3.06 10¹⁵ m / s
b) F= m a
F= 4.68 10⁻²⁶ 3.06 10¹⁵
F= 1.43 10⁻¹⁰ N
c) if we hit the wall for 1015 each exerts a force F
F_total = n F
F_total = n m a
F_total = 10¹⁵ 4.68 10⁻²⁶ 3.06 10¹⁵
F_total = 14.32 10⁻²⁶ N
<span>The work output of a machine divided by the work input is the "Efficiency" of the machine.
Hope this helps!</span>
<span>Ans : Initial E = KE = ½mv² = ½ * 1.2kg * (2.2m/s)² = 2.9 J
max spring compression where both velocities are the same: conserve momentum:
1.2kg * 2.2m/s = (1.2 + 3.2)kg * v → v = 0.6 m/s
which means the combined KE = ½ * (1.2 + 3.2)kg * (0.6m/s)² = 0.79 J
The remaining energy went into the spring:
U = (2.9 - 0.79) J = 2.1 J = ½kx² = ½ * 554N/m * x²
x = 0.0076 m ↠(a)</span>