<h3>Answer:</h3>
Excess Reagent = NBr₃
<h3>Solution:</h3>
The Balance Chemical Equation for the reaction of NBr₃ and NaOH is as follow,
2 NBr₃ + 3 NaOH → N₂ + 3 NaBr + 3 HBrO
Calculating the Limiting Reagent,
According to Balance equation,
2 moles NBr₃ reacts with = 3 moles of NaOH
So,
40 moles of NBr₃ will react with = X moles of NaOH
Solving for X,
X = (40 mol × 3 mol) ÷ 2 mol
X = 60 mol of NaOH
It means 40 moles of NBr₃ requires 60 moles of NaOH, while we are provided with 48 moles of NaOH which is Limited. Therefore, NaOH is the limiting reagent and will control the yield of products. And NBr₃ is in excess as some of it is left due to complete consumption of NaOH.
The correct answer is b. bimolecular
A low specific heat capacity
Given what we know, we can confirm that in a voltaic cell, the anode loses electrons and is oxidized, meanwhile, the cathode is reduced by gaining electrons.
<h3 /><h3>What is a voltaic cell?</h3>
- It is described as an electrochemical cell.
- These cells use chemical reactions to produce electrical energy.
- During this reaction, an anode loses electrons, thus oxidizing.
- Meanwhile, the cathode gains electrons and is reduced.
Therefore, given the nature of the voltaic cell, we can confirm that during its reaction, the anode is oxidized by losing electrons while the cathode becomes reduced by gaining them.
To learn more about electrical energy visit:
brainly.com/question/863273?referrer=searchResults