1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NISA [10]
4 years ago
15

A wheel initially spinning at wo = 50.0 rad/s comes to a halt in 20.0 seconds. Determine the constant angular acceleration and t

he number of revolutions it makes before stopping. An athlete is holding a 2.5 meter pole by one end. The pole makes an angle of 60 with the horizontal. The mass of the pole is 4 kg. Determine the torque exerted by the pole on the athlete's hand. (The mass of the pole can be assumed to be concentrated at the center of mass.)
Physics
1 answer:
Irina-Kira [14]4 years ago
3 0

Answer:

part (a) \alpha\ =\ -2.5\ rad/s^2

part (b) N = 79.61 rev

part (c) \tau\ =\ 23.54\ Nm

Explanation:

Given,

  • Initial speed of the wheel = w_o\ =\ 50.0\ rad/s
  • total time taken = t = 20.0 sec

part (a)

Let \alpha be the angular acceleration of the wheel.

Wheel is finally at the rest. Hence the final angular speed of the wheel is 0.

\therefore w_f\ =\ w_0\ +\ \alpha t\\\Rightarrow \alpha\ =\ -\dfrac{w_0}{t}\\\Rightarrow \alpha\ =\ -\dfrac{50}{20}\\\Rightarrow \alpha\ =\ -2.5\ rad/s^2

part (b)

Let \theta be the total angular displacement of the wheel from initial position till the rest.

\therefore \theta\ =\ w_0t\ +\ \dfrac{1}{2}\alphat^2\\\Rightarrow \theta\ =\ 50\times 20\ -\ 0.5\times 2.5\times 20^2\\\Rightarrow \theta\ =\ 500\ rad

We know,  1 revolution = 2\pi rad

Let N be the number of revolution covered by the wheel.

\therefore N\ =\ \dfrac{\theta}{2\pi}\\\Rightarrow N\ =\ \dfrac{500}{2\times 3.14}\\\Rightarrow N\ =\ 79.61\ rev

Hence the 79.61 revolution is covered by the wheel in the 20 sec.

part (c)

Given,

  • Mass of the pole = m = 4 kg
  • Length of the pole = L = 2.5 m
  • Angle of the pole with the horizontal axis = \theta\ =\ 60^o

Now the center of mass of the pole = d\ =\ \dfra{L}{2}\ =\ \dfrac{2.5}{2}\ =\ 1.25\ m

Weight component of the pole perpendicular to the center of mass = F\ =\ mgcos\theta

\therefore \tau\ =\ F\times d\\\Rightarrow \tau\ =\ 4\times 9.81\times cos60^o\times 1.25\\\Rightarrow \tau\ =\ 23.54\ Nm

You might be interested in
True or False. Centripetal force holds an object towards the center of a circle.
Flura [38]
False’ because it is a force that makes a body follow a curved path
7 0
3 years ago
Why does increasing the number of trials increase confidence in the results of the experiment?
Paladinen [302]
It increases confidence because the more times you conduct the same experiment over and over should either prove your hypothesis right and wrong and eliminate any random occurrences that might affect your results.
8 0
3 years ago
Read 2 more answers
A ball is dropped from rest from a high window of a tall building and falls for 4 seconds. Neglecting air resistance, the final
Semenov [28]

Answer:

The final velocity of the ball is 39.2 m/s.

Explanation:

Given that,

A ball is dropped from rest from a high window of a tall building.

Time = 4 sec

We need to calculate the final velocity of the ball

Using equation if motion

v=u+gt

Where, v = final velocity

u = initial velocity

g = acceleration due to gravity

t = time

Put the value into the formula

v=0+9.8\times4

v=39.2\ m/s

Hence, The final velocity of the ball is 39.2 m/s.

6 0
4 years ago
A diver stands on a diving platform 10.0 m above the surface of a pool and leaps upward with an initial speed of 2.5 m/s. how fa
Alexus [3.1K]
<span>The diver is heading downwards at 12 m/s Ignoring air resistance, the formula for the distance under constant acceleration is d = VT - 0.5AT^2 where V = initial velocity T = time A = acceleration (9.8 m/s^2 on Earth) In this problem, the initial velocity is 2.5 m/s and the target distance will be -7.0 m (3.0 m - 10.0 m = -7.0 m) So let's substitute the known values and solve for T d = VT - 0.5AT^2 -7 = 2.5T - 0.5*9.8T^2 -7 = 2.5T - 4.9T^2 0 = 2.5T - 4.9T^2 + 7 We now have a quadratic equation with A=-4.9, B=2.5, C=7. Using the quadratic formula, find the roots, which are -0.96705 and 1.477251164. Now the diver's velocity will be the initial velocity minus the acceleration due to gravity over the time. So V = 2.5 m/s - 9.8 m/s^2 * 1.477251164 s V = 2.5 m/s - 14.47706141 m/s V = -11.97706141 m/s So the diver is going down at a velocity of 11.98 m/s Now the negative root of -0.967047083 is how much earlier the diver would have had to jump at the location of the diving board. And for grins, let's compute how fast he would have had to jump to end up at the same point. V = 2.5 m/s - 9.8 m/s^2 * (-0.967047083 s) V = 2.5 m/s - (-9.477061409 m/s) V = 2.5 m/s + 9.477061409 m/s V = 11.97706141 m/s And you get the exact same velocity, except it's the opposite sign. In any case, the result needs to be rounded to 2 significant figures which is -12 m/s</span>
7 0
3 years ago
On a very muddy football field, a 110kg linebacker tackles an 85kg halfback. Immediately before the collision, the linebacker is
Alchen [17]
<span>Using conservation of energy and momentum you can solve this question. M_l = mass of linebacker
M_ h = mass of halfback
V_l = velocity of linebacker
V_h = velocity of halfback

So for conservation of momentum,
rho = mv

M_l x V_li + M_h x V_hi = M_l x V_lf + M_h x V_hf

For conservation of energy (kinetic)
E_k = 1/2mv^2/ 1/2mV_li^2 + 1/2mV_{hi}^2 = 1/2mV_{lf}^2 + 1/2mV_{hf}^2

Where i and h stand for initial and final values.
We are already told the masses, \[M_l = 110kg\] \[M_h = 85kg\] and the final velocities \[V_{fi} = 8.5ms^{-1}\] and \[V_{ih} = 7.2ms^{-1} </span>
6 0
3 years ago
Other questions:
  • I’m just gonna keep doing these answer and I will give brainliest
    5·2 answers
  • A 100-turn, 2.0-cm-diameter coil is at rest in a horizontal plane. A uniform magnetic field 60∘ away from vertical increases fro
    8·1 answer
  • A ray diagram without the produced image is shown.
    7·2 answers
  • The speed of a projectile when it reaches its maximum height is 0.58 times its speed when it is at half its maximum height. What
    9·1 answer
  • Chuck and Jackie stand on separate carts, both of which can slide without friction. The combined mass of Chuck and his cart, mca
    7·1 answer
  • A car travels a distance of 540km in 6 hours. What speed did it travel at?
    9·2 answers
  • WILL GIVE BRAINLYST A flower pot is thrown out of a window with a horizontal velocity of 8 m/s. If the window is 1.5 m off the g
    6·1 answer
  • When a wave strikes and object and bounces off . ( example echo)
    6·1 answer
  • How much heat is absorbed by 3 kg honey baked ham as energy from the oven causes its temperature to change from 10°C to 60°C? (S
    13·1 answer
  • Why is Darwin criticized for his theory? and who were they
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!