<h2>
Answer:</h2>
<u>Friction:</u>
When an object slips on a surface, an opposing force acts between the tangent planes which acts in the opposite direction of motion. This opposing force is called Friction. Or in other words, Friction is the opposing force that opposes the motion between two surfaces.
The main component of friction are:
<u>Normal Reaction (R):
</u>
Suppose a block is placed on a table in the above picture, which is in resting state, then two forces are acting on it at that time.
The first is due to its weight mg which is working from its center of gravity towards the vertical bottom.
The second one is superimposed vertically upwards by the table on the block, called the reaction force (P). This force passes through the center of gravity of the block.
Due to P = mg, the box is in equilibrium position on the table.
<u>Coefficient of friction ( </u>μ )<u>:
</u>
The ratio of the force of friction and the reaction force is called the coefficient of friction.
Coefficient of friction, µ = force of friction / reaction force
μ = F / R
The coefficient of friction is volume less and dimensionless.
Its value is between 0 to 1.
<u>Advantage and disadvantage from friction force:
</u>
- The advantage of the force of friction is that due to friction, we can walk on the earth without slipping.
- Brakes in all vehicles are due to the force of friction.
- We can write on the board only because of the force of friction.
- The disadvantage of this force is that due to friction, some parts of energy are lost in the machines and there is wear and tear on the machines.
<u>How to reduce friction:
</u>
- Using lubricants (oil or grease) in machines.
- Friction can be reduced by using ball bearings etc.
- Using a soap solution and powder.
Answer:
Mass, m = 6.18 kg
Explanation:
Given the following data;
Frequency, F = 10 Hz
Spring constant, k = 250 N/m
We know that pie, π = 22/7
To find the mass, we would use the following formula;
F = 1/2π√(k/m)
Where;
F is the frequency of oscillation.
k is the spring constant.
m is the mass of the spring.
Substituting into the formula, we have;
10 = 1/2 * 22/7 * √250/m
10 = 22/14 * √250/m
Cross-multiplying, we have;
140 = 22 * √250/m
Dividing both sides by 22, we have;
140/22 = √250/m
6.36 = √250/m
Taking the square of both sides, we have;
6.36² = (√250/m)²
40.45 = 250/m
Cross-multiplying, we have;
40.45m = 250
Mass, m = 250/40.45
Mass, m = 6.18 kg
Answer:
a) ![(Qa*g*Vb)-(Qh*Vb*g)=(Qh*Vb*a)\\where \\g=gravity [m/s^2]\\a=acceleration [m/s^2]](https://tex.z-dn.net/?f=%28Qa%2Ag%2AVb%29-%28Qh%2AVb%2Ag%29%3D%28Qh%2AVb%2Aa%29%5C%5Cwhere%20%5C%5Cg%3Dgravity%20%5Bm%2Fs%5E2%5D%5C%5Ca%3Dacceleration%20%5Bm%2Fs%5E2%5D)
b) a = 19.61[m/s^2]
Explanation:
The total mass of the balloon is:
![massball=densityheli*volumeheli\\\\massball=0.41 [kg/m^3]*0.048[m^3]\\massball=0.01968[kg]\\\\](https://tex.z-dn.net/?f=massball%3Ddensityheli%2Avolumeheli%5C%5C%5C%5Cmassball%3D0.41%20%5Bkg%2Fm%5E3%5D%2A0.048%5Bm%5E3%5D%5C%5Cmassball%3D0.01968%5Bkg%5D%5C%5C%5C%5C)
The buoyancy force acting on the balloon is:
![Fb=densityair*gravity*volumeball\\Fb=1.23[kg/m^3]*9.81[m/s^2]*0.048[m^3]\\Fb=0.579[N]](https://tex.z-dn.net/?f=Fb%3Ddensityair%2Agravity%2Avolumeball%5C%5CFb%3D1.23%5Bkg%2Fm%5E3%5D%2A9.81%5Bm%2Fs%5E2%5D%2A0.048%5Bm%5E3%5D%5C%5CFb%3D0.579%5BN%5D)
Now we need to make a free body diagram where we can see the forces that are acting over the balloon and determinate the acceleration.
In the attached image we can see the free body diagram and the equation deducted by Newton's second law
Answer:
a) 
b)
c)
Explanation:
a) The speed of a wave is given by the following equation:

Where:
λ is the wavelength
f is the frequency

b) The harmonic wave has the following equation:

A is the amplitude (2 m)
k is the wavenumber (2π/λ)
ω is the angular frequency (2πf)
c) Here we need to find the heigth at x=3 m and t =10 s, so we need to find y(3,10).
I hope it helps you!