Answer:
D = 271.54 m
Explanation:
given,
1. car accelerates at 4.6 m/s² for 6.2 s
2. constant speed for 2.1 s
3. slows down at 3.3 m/s²
distance travel for case 1
using equation of motion
d₁ = 88.41 m
case 2
constant speed for 2.1 s now, we have to find velocity
v = u + at
v = 0 + 4.6 x 6.2
v = 28.52 m/s
distance travel in case 2
d₂ = v x t
d₂ = 28.52 x 2.1 = 59.89 m
for case 3
distance travel by the car
v² = u² + 2 a s
final velocity if the car is zero
0² = 28.52² + 2 x (-3.3) x d₃
6.6 d₃ = 813.39
d₃ = 123.24 m
total distance travel by the car
D = d₁ + d₂ + d₃
D = 88.41 + 59.89 + 123.24
D = 271.54 m
Answer:
D. half as much
Explanation:
let m and M be the mass of the planets and r be the distance between them.
then: the force of attraction between them is given by,
F = G×m×M/(r^2)
if we keep one mass constant and double the other and also double the distance between them.
the force of attraction becomes:
F1 = 2G×m×M/[(2×r)^2]
= 2G×m×M/[4×(r)^2]
= (1/2)G×m×M/(r^2)
= 1/2×F
therefore, when you double one mass and keep the other mass constant and double the distance between the masses you decrease the force by a factor of 1/2.
travel through a vacuum at the speed of light. Other waves need a medium; sound waves need molecules that vibrate.
Answer:
As Per Provided Information
Velocity of wave v is 10m/s
These ocean wave passes a stationary point every 5 s ( It's time period)
First we calculate the frequency of ocean wave .
<u>Using</u><u> Formulae</u>

here
v is the velocity of wave .

Now calculating the wavelength of the wave .
<u>Using </u><u>Formulae </u>

Substituting the value and we obtain

<u>Therefore</u><u>,</u>
- <u>Wavelength </u><u>of </u><u>the </u><u>wave </u><u>is </u><u>100 </u><u>metres</u><u>.</u>