Mercury has a high boiling point of 357 degrees C.
Mercury has a freezing point of −39 degrees C.
In order to compute the final velocity of the trains, we may apply the principle of conservation of momentum which is:
initial momentum = final momentum
m₁v₁ = m₂v₂
The final mass of the trains will be:
10,000 + 10,000 = 20,000 kg
Substituting the values into the equation:
10,000 * 3 = 20,000 * v
v = 1.5 m/s
The final velocity of the trains will be 1.5 m/s
My guess for this one would be; 400 N
My reasoning would be; it starts at 0 on both X and Y, if you need to get to 1.00 meters thats 4/4. 1/4 of 1.00 is .25, and on .25 its on 100 so multiply it by 4 to make 1.00 and you get 400 N