Answer:
Explanation:
The formula for hydrogen atomic spectrum is as follows
energy of photon due to transition from higher orbit n₂ to n₁

For layman series n₁ = 1 and n₂ = 2 , 3 , 4 , ... etc
energy of first line

10.2 eV
wavelength of photon = 12375 / 10.2 = 1213.2 A
energy of 2 nd line

= 12.08 eV
wavelength of photon = 12375 / 12.08 = 1024.4 A
energy of third line

12.75 e V
wavelength of photon = 12375 / 12.75 = 970.6 A
energy of fourth line

= 13.056 eV
wavelength of photon = 12375 / 13.05 = 948.3 A
energy of fifth line

13.22 eV
wavelength of photon = 12375 / 13.22 = 936.1 A
a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Answer:
The current is reduced to half of its original value.
Explanation:
- Assuming we can apply Ohm's Law to the circuit, as the internal resistance and the load resistor are in series, we can find the current I₁ as follows:

- where Rint = r and RL = r
- Replacing these values in I₁, we have:

- When the battery ages, if the internal resistance triples, the new current can be found using Ohm's Law again:

- We can find the relationship between I₂, and I₁, dividing both sides, as follows:

- The current when the internal resistance triples, is half of the original value, when the internal resistance was r, equal to the resistance of the load.
(a) The net force on the shopping cart is zero.
(b) The the force of friction on the shopping cart is 25 N.
(c) When same force is applied to the shopping cart on a wet surface, it will move faster.
<h3>Net force on the shopping cart</h3>
The net force on the shopping cart is calculated as follows;
F(net) = F - Ff
where;
- F is the applied force
- Ff is the frictional force
ma = F - Ff
where;
- a is acceleration of the cart
- m is mass of the cart
at a constant velocity, a = 0
0 = F - Ff
F(net) = 0
F = Ff = 25 N
Net force is zero, and frictional force is equal to applied force.
<h3>On wet surface</h3>
Coefficient of kinetic friction of solid surface is greater than that of wet surface.
Since frictional force limit motion, when the frictional force is smaller, the object tends to move faster.
Thus, the cart will move faster on a wet surface due to decrease in friction.
Learn more about frictional force here: brainly.com/question/24386803
#SPJ1