Answer:
E = 1.04*10⁻¹ N/C
Explanation:
Assuming no other forces acting on the proton than the electric field, as this is uniform, we can calculate the acceleration of the proton, with the following kinematic equation:

As the proton is coming at rest after travelling 0.200 m to the right, vf = 0, and x = 0.200 m.
Replacing this values in the equation above, we can solve for a, as follows:

According to Newton´s 2nd Law, and applying the definition of an electric field, we can say the following:
F = mp*a = q*E
For a proton, we have the following values:
mp = 1.67*10⁻²⁷ kg
q = e = 1.6*10⁻¹⁹ C
So, we can solve for E (in magnitude) , as follows:

⇒ E = 1.04*10⁻¹ N/C
Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N
Answer:
A
Explanation:
The greatest concentration of atomic mass is in the nucleus because it is made up of protons and neutrons. The electrons surrounding the nucleus don't have as much mass as protons or neutrons.
Hopefully this helps...
Just took the test. Its curved!
Hope this helps, if you wnna work together or need more help hmu/add me on discord @FaultyScript#3619