1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
12

Find the components to write this vector in unit vector notation: 63.5 A ​please help

Physics
1 answer:
IrinaVladis [17]3 years ago
6 0

Vector is perpendicular to x axis or i component.

Hence i component is 0

j component is 63.5

\\ \sf\longmapsto \overrightharpoon{A}=0\hat{i} +63.5\hat{j}

You might be interested in
Two pipes move the same amount of ideal fluid in the same amount of time. One pipe has a 2 in. diameter; the other has a 3 in. d
KATRIN_1 [288]

Answer:

a) 3-in. pipe

Explanation:

Given that

Fluid flow is in same amount in the same time it means that volume flow rate is same for the pipes

Volume flow rate

Q = A V

A=Area ,V=Velocity

A=\dfrac{\pi}{4}d^2

If diameter d is more then the velocity will be less for same volume flow rate .We also Know that if pressure is more then the velocity will be less.

The second pipe 3 in diameter having more diameter then the velocity will be less but the pressure will be more.

That is why the 3 in diameter is having more pressure than 2 in diameter pipe.

Therefore the answer will be a.

a) 3-in diameter  pipe

6 0
3 years ago
A driven RLC circuit is being driven by an AC emf source with a maximum current of 2.75 A and maximum voltage of 150 V. The curr
weqwewe [10]

Answer:

(a). Z = 54.54 ohm

(b). R = 36 ohm

(c). The circuit will be Capacitive.

Explanation:

Given data

I = 2.75 A

Voltage = 150 V

\phi = 0.85 rad = 48.72°

(a). Impedance of the circuit is given by

Z = \frac{V}{I}

Z = \frac{150}{2.75}

Z = 54.54 ohm

(b). We know that resistance of the circuit is given by

R = \frac{Z}{\sqrt{1 + \tan^{2}\phi } }

Put the values of Z & \phi in above formula we get

R = \frac{54.54}{\sqrt{1 + \tan^{2} ( \ 48.72) } }

R = 36 ohm

(c). Since the phase angle is negative so the circuit will be Capacitive.

3 0
3 years ago
what output force is generated when an input force of 630 n is applied to a machine with a mechanical advantage of 3
Marta_Voda [28]
The mechanical advantage is the factor by which
the machine multiplies the input force.

If the MA is 3 and the input force is 630N, then
the output force is

           (3) x (630N) = 1,890N
3 0
3 years ago
Read 2 more answers
What is the acceleration of the box?
worty [1.4K]

Answer:

a=4,32m/s^2

Explanation:

Fnet = F1 - F2

= 12-1.2

= 10.8N

m=2.5kg

Fnet =ma

10.8=2.5a then divide both sides by 2.5 to get acceleration

8 0
3 years ago
A quarterback is set up to throw the football to a receiver who is running with a constant velocity v⃗ rv→rv_r_vec directly away
Artist 52 [7]

Answer:

a) V_o,y = 0.5*g*t_c

b) V_o,x = D/t_c - v_r

c) V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

d)  Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

Explanation:

Given:

- The velocity of quarterback before the throw = v_r

- The initial distance of receiver = r

- The final distance of receiver = D

- The time taken to catch the throw = t_c

- x(0) = y(0) = 0

Find:

a) Find V_o,y, the vertical component of the velocity of the ball when the quarterback releases it.  Express V_o,y in terms of t_c and g.

b) Find V_o,x, the initial horizontal component of velocity of the ball.   Express your answer for V_o,x in terms of D, t_c, and v_r.

c) Find the speed V_o with which the quarterback must throw the ball.  

   Answer in terms of D, t_c, v_r, and g.

d) Assuming that the quarterback throws the ball with speed V_o, find the angle Q above the horizontal at which he should throw it.

Solution:

- The vertical component of velocity V_o,y can be calculated using second kinematics equation of motion:

                               y = y(0) + V_o,y*t_c - 0.5*g*t_c^2

                              0 = 0 + V_o,y*t_c - 0.5*g*t_c^2

                               V_o,y = 0.5*g*t_c

- The horizontal component of velocity V_o,x witch which velocity is thrown can be calculated using second kinematics equation of motion:

- We know that V_i, x = V_o,x + v_r. Hence,

                               x = x(0) + V_i,x*t_c

                               D = 0 + V_i,x*t_c

                               V_o,x + v_r = D/t_c

                                V_o,x = D/t_c - v_r

- The speed with which the ball was thrown can be evaluated by finding the resultant of V_o,x and V_o,y components of velocity as follows:

                           V_o = sqrt ( V_o,x^2 + V_o,y^2)

                          V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

       

- The angle with which it should be thrown can be evaluated by trigonometric relation:

                            tan(Q) = ( V_o,y / V_o,x )

                            tan(Q) = ( (0.5*g*t_c)/ (D/t_c - v_r) )

                                   Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

                           

                               

6 0
2 years ago
Other questions:
  • A weather balloon is filled to a volume of 2 liters with helium gas at a pressure of 101 kPa, at a temperature of 22oC. The ball
    9·2 answers
  • When the moon orbits the Earth, it has velocity. Inertia would make the moon continue in a straight line instead of orbiting at
    9·1 answer
  • if the volume of a scuba tank filled with air remains constant and its temperature goes down, what happens to its pressure?
    13·1 answer
  • A catfish is 1.5 m below the surface of a smooth lake.
    11·1 answer
  • Which of the following is an SI base unit for measuring length?
    14·2 answers
  • Elena earns $10.50 per hour as a server working x hours per week. She also earns $8.50 per hour editing poetry for y hours per w
    10·1 answer
  • Which of the following statements concerning moral development is not true?
    12·1 answer
  • Help me pls im sturgguleing in scince.
    8·2 answers
  • Mass is not volume.<br> True<br> False
    15·1 answer
  • A specific amount of energy is emitted when excited electrons in an atom in a sample of an element return to the ground state. T
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!