This question involves the concepts of echo, ultrasonic images, ultrasonic sound waves.
The process of ultrasonic images uses the "echo" property of the sound waves.
Echo is the property of the sound wave by the virtue of which the sound wave reflects back to the source of the sound after hitting a surface or an object.
Ultrasonic images are obtained from inside organs of our body. This process involves the use of ultrasonic sound waves that have a frequency greater than 20,000 Hz. These sound waves are out of the range of audible sound by the human ear. When these ultrasonic sound waves are sent in form of pulses into the human body by the use of probes, they reflect back from the tissues of different organs to the probe. The probe then records the reflection properties of these sound waves and displays them in form of an image, known as ultrasonic images.
Learn more about echo here:
brainly.com/question/14335186?referrer=searchResults
The attached picture shows the process of ultrasonic imaging.
Answer:
1/4 times your earth's weight
Explanation:
assuming the Mass of earth = M
Radius of earth = R
∴ the mass of the planet= 4M
the radius of the planet = 4R
gravitational force of earth is given as = 
where G is the gravitational constant
Gravitational force of the planet = 
=
=
recall, gravitational force of earth is given as = 
∴Gravitational force of planet = 1/4 times the gravitational force of the earth
you would weigh 1/4 times your earth's weight
Well, the tension in the thread will probably quadruple, but the hanging body will continue to just hang there.
The question gives us no evidence that it is doing any oscillating, and there's no reason for it to start just because it suddenly got heavier.
Find the electric flux and the disp at t=0.50ns
<span>Given: </span>
<span>Resistor R = 160 Ω </span>
<span>Voltage ε = 22.0 V </span>
<span>Capacitor C = 3.10 pF = 3.10 * 10^-12 F </span>
<span>time t = 0.5 ns = 0.5 * 10^-9 s </span>
<span>ε0 = 8.85 * 10^-12 </span>
<span>Solution: </span>
<span>ELECTRIC FLUX: </span>
<span>Φ = Q/ε0 </span>
<span>we have ε0, we need to find Q the charge </span>
<span>STEP 1: FIND Q </span>
<span>Q = C ε ( 1 - e^(-t/RC) ) </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 1 - 0.365 } </span>
<span>Q = { 3.10 * 10^-12 } { 22.0 } { 0.635 } </span>
<span>Q = 43.31 * 10^-12 C </span>
<span>STEP 2: WE HAVE Q AND ε0 > >>> SOLVE FOR ELECTRIC FLUX >>> </span>
<span>Φ = Q/ε0 </span>
<span>Φ = { 43.31 * 10^-12 C } / { ε0 = 8.85 * 10^-12 } </span>
<span>Φ = 4.8937 = 4.9 V.m </span>
<span>DISPLACEMENT CURRENT </span>
<span>we use the following equation: </span>
<span>I = { ε / R } { e^(-t/RC) } </span>
<span>I = { 22 / 160 } { e^(- 0.5 * 10^-9 / 160 *3.10 * 10^-12 ) } </span>
<span>I = { 0.1375 } { 0.365 } </span>
<span>I = 0.0502 A = 0.05 A </span>