1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
6

Consider a force of 57.3 N, pulling 3 blocks of

Physics
1 answer:
andrezito [222]3 years ago
3 0

Block 1 (the rightmost block) has

• net horizontal force

∑ <em>F</em> = <em>F</em> - <em>T₁</em> - <em>f₁</em> = <em>m₁a</em>

• net vertical force

∑ <em>F</em> = <em>N₁</em> - <em>m₁g</em> = 0

where <em>F</em> = 57.3 N, <em>T₁</em> is the tension in the string connecting blocks 1 and 2, <em>f₁</em> is the magnitude of kinetic friction felt by block 1, <em>m₁</em> = 0.8 kg is its mass, <em>a</em> is the acceleration you want to find, and <em>N₁</em> is the magnitude of the normal force exerted by the surface.

Block 2 (middle) has much the same information:

• net horiz. force

∑ <em>F</em> = <em>T₁</em> - <em>T₂</em> - <em>f₂</em> = <em>m₂a</em>

• net vert. force

∑ <em>F</em> = <em>N₂</em> - <em>m₂g</em> = 0

with similarly defined symbols.

The same goes for block 3 (leftmost):

• net horiz. force

∑ <em>F</em> = <em>T₂</em> - <em>f₃</em> = <em>m₃a</em>

• net vert. force

∑ <em>F</em> = <em>N₃</em> - <em>m₃g</em> = 0

We have <em>m₁</em> = <em>m₂</em> = <em>m₃</em> = 0.8 kg, so I'll just replace each with <em>m</em>. It follows that each normal force has the same magnitude, <em>N₁</em> = <em>N₂</em> = <em>N₃</em> = <em>mg</em>. And as a consequence of that, each frictional force has the same magnitude, <em>f₁</em> = <em>f₂</em> = <em>f₃</em> = 0.4<em>mg.</em>

In short, the relevant equations are

[1] … 57.3 N - <em>T₁</em> - 0.4<em>mg</em> = <em>ma</em>

[2] …<em>T₁</em> - <em>T₂</em> - 0.4<em>mg</em> = <em>ma</em>

[3] … <em>T₂</em> - 0.4<em>mg</em> = <em>ma</em>

<em />

Adding [1], [2] and [3] together eliminates the tension forces, and we get

57.3 N - 1.2<em>mg</em> = 3<em>ma</em>

<em />

Solve for <em>a</em> :

57.3 N - 1.2 (0.8 kg) (9.8 m/s²) = 3 (0.8 kg) <em>a</em>

57.3 N - 9.408 N = (2.4 kg) <em>a</em>

<em>a</em> = (47.892 N) / (2.4 kg)

<em>a</em> ≈ 20.0 m/s²

You might be interested in
A 44-turn rectangular coil with length ℓ = 17.0 cm and width w = 8.10 cm is in a region with its axis initially aligned to a hor
Mumz [18]

Answer:

The maximum induced emf in the rotating coil  = 29.66V

The induced emf in the rotating coil when (t = 1.00 s) = 26.66V

The maximum rate of change of the magnetic flux through the rotating coil = 0.674Wb/s

Explanation:

Lets state the parameters we are being given right from the question:

Number of rectangular coil, (N) = 44

Length of Coil, l =17cm in meters we have; (l) = 17 × 10⁻² m

Width of Coil, w =8.10cm in meters we have; (w) = 8.10 × 10⁻² m

Magnitude of Uniform Magnetic Field (B) = 767mT= 765 × 10⁻³ T

Angular Speed of Coil, (ω) = 64 rad/s

(a)

To calculate the induced emf in the rotating cell,we can use the formula:

emf = NBAωsin(ωt)

For maximum induced emf, the value of sin(ωt) will be 1

emf_max = NBAω ; if (A = l × w) , we have:

emf_max  = NB(l × w)ω

subsitituting the parameters into the above equation; we have:

emf_max  = 44 × 765 × 10⁻³ ( 17 × 10⁻² × 8.10 × 10⁻² ) × 64

= 29.66V

(b)

At t = 1s, the induced emf is calculated as:

emf = NBAωsin(ωt)

substituting the parameters into the equation, we have:

emf =   44 × 765 × 10⁻³ ( 17 × 10⁻² × 8.10 × 10⁻² ) × 64 × sin (64 × 1)

=26.66V

(c)

To calculate the maximum rate of change of the magnetic flux through the rotating coil; we need to reflect on the equation for the maximum induced emf in terms of magnetic flux.

i.e emf_max = N\frac{d∅}{dt}

since emf_max = 29.66 and N = 44; we have:

29.66 =  44\frac{d∅}{dt}

\frac{d∅}{dt} = \frac{29.66}{44}

= 0.674 Wb/s

5 0
3 years ago
A microphone is located on the line connecting two speakers that are 0.513 m apart and oscillating in phase. The microphone is 1
pantera1 [17]

Answer:

frequency 1 = 334.30 Hz

frequency 2 = 1002.92 Hz

Explanation:

Given data

speaker distance y = 0.513 m

microphone distance D = 1.80 m

to find out

lowest two frequencies

solution

we know velocity of sound is 343 m/s

so we consider point x

so at 1st speaker distance from x   = D + (y/2)

1st speaker distance from x   = 1.80 + (0.513/2) = 2.0565 m   .....1

and

at 2nd speaker distance from x   = D - (y/2)

2nd speaker distance from x   = 1.80 - (0.513/2) = 1.5435 m     .........2

so destructive interference from 1 and 2  we know

1st - 2nd = ( m + 0.5 ) wavelength

2.0565 m - 1.5435 m = (  0+ 0.5) wavelength

wavelength  = 1.026 m

so here 1st min frequency will be

frequency 1 = velocity of sound / wavelength

frequency 1 = 343 / 1.026 =334.30 Hz

and

2nd  min frequency will be

frequency 2 =

2.0565 m - 1.5435 m = (  1 + 0.5) wavelength

wavelength  = 0.342 m

frequency 2 =  velocity of sound / wavelength

frequency 2 = 343 / 0.342 = 1002.92 Hz

7 0
3 years ago
Hanna tosses a ball straight up with enough speed to remain in the air for several seconds?
olga_2 [115]
A) the velocity is 0 m/s
3 0
3 years ago
Read 2 more answers
Which statement about the volume and pressure of a gas is the most accurate? Volume of a gas is equal to pressure of that gas in
Julli [10]

Answer: Volume of a gas is inversely proportional to pressure of that gas in any container.

Explanation:

Hi, according to Boyle's Gas law, the volume of a gas is inversely proportional to the pressure of that gas, at a constant temperature.

The expression is:

P1.V1= P2.V2

V= 1/P

PV = k  

Where:

P = pressure of a gas

V = volume of a gas

k = constant

Feel free to ask for more if needed or if you did not understand something.

5 0
3 years ago
Read 2 more answers
If a 4N weight is hung on a spring, and it extends by 0.2m, what is the spring constant (k)?
Naddika [18.5K]

Answer: 200 N/m

Explanation:

The Gravitational spring energy(Us) is equal to 1/2kx^2. So we have x as .2 m and Us as 4 N. So 4 N = 1/2 * k * .2^2. So now we solve for K and get 200 N/m.

4 0
3 years ago
Read 2 more answers
Other questions:
  • A car, traveling at , encounters a dip in the road. The radius of curvature at the bottom of the dip is . Each of the car’s four
    11·1 answer
  • Atoms that are large and unstable are likely to undergo
    14·1 answer
  • Mechanical energy is a term that can be used to describe
    10·2 answers
  • How to find a scale for a graph
    7·1 answer
  • Suppose the coefficient of static friction between the road and the tires on a car is 0.638 and the car has no negative lift. Wh
    11·1 answer
  • A -5.0 μC charge experiences a 11 i^ N electric force in a certain electric field. [Recall that i^ is a unit vector in the x-dir
    11·1 answer
  • Consider the following hypothetical subject performing the EMG laboratory: Immediately after the subject's maximum grip strength
    10·1 answer
  • I need written answer with solution:-
    7·1 answer
  • The momentum of the moving depends on which among the given factors?
    11·1 answer
  • How does position depend on time on a free falling motion, for short distance, near the surface of the earth?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!