Answer:
2.068 x 10^6 m / s
Explanation:
radius, r = 5.92 x 10^-11 m
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
As the electron is revolving in a circular path, it experiences a centripetal force which is balanced by the electrostatic force between the electron and the nucleus.
centripetal force = 
Electrostatic force = 
where, k be the Coulombic constant, k = 9 x 10^9 Nm^2 / C^2
So, balancing both the forces we get



v = 2.068 x 10^6 m / s
Thus, the speed of the electron is give by 2.068 x 10^6 m / s.
The answer is true. The table does show an object moving with changing speed.
Answer:
E. all of these
Explanation:
The designation of a point in space all the points that necessary
- reference point
- a direction
- fundamental units
- a direction
- motion
all are necessary to designate a point in space. Hence option E is correct.
For example in simple harmonic motion we need to specify all the above factors of the object in order to designate the position of the object.
Answer:
h = 10000 m
Explanation:
The pressure applied at a depth of the liquid is given by:
P =ρgh
where,
P = Maximum Pressure to Survive = (1000)(Atmospheric Pressure)
P = (1000)(101325 Pa) = 1.01 x 10⁸ Pa
ρ = Density of sea water = 1025 kg/m³
g = 9.8 m/s²
h = maximum depth to survive = ?
Therefore,
1.01 x 10⁸ Pa = (1025 kg/m³)(9.8 m/s²)h
h = (1.01 x 10⁸ Pa)/(1025 kg/m³)(9.8 m/s²)
<u>h = 10000 m</u>
C. amphibian eggs do not contain a protective shell