It stays constant, because it's using that energy to change state
Answer:
<em>155.80rad/s</em>
Explanation:
Using the equation of motion to find the angular acceleration:

is the final angular velocity in rad/s
is the initial angular velocity in rad/s
is the angular acceleration
t is the time taken
Given the following

Time = 4.1secs
Convert the angular velocity to rad/s
1rpm = 0.10472rad/s
6100rpm = x
x = 6100 * 0.10472
x = 638.792rad/s
Get the angular acceleration:
Recall that:

638.792 = 0 + ∝(4.1)
4.1∝ = 638.792
∝ = 638.792/4.1
∝ = 155.80rad/s
<em>Hence the angular acceleration as the blades slow down is 155.80rad/s</em>
Parallel-plate capacitor has there fore formula is
<span>C=(<span>ϵ0</span>A)/d
putting values</span>C=(8.85*10^-12*pi*.05^2)/.00063
=1.1*10^-10F
then Q=CV=1.1*10^-10*1000=1.1*10^-7C
as
<span>η=Q/A</span><span>therefore
(1.1*10^-7)/(pi*.05^2)
=1.4*10^-5C/m^ our answer
hope this helps</span>
Answer:
the Princess in "St. George and the Dragon"