1) c. 2 m/s
Explanation:
The relationship between frequency, wavelength and speed of a wave is

where
v is the speed
is the wavelength
f is the frequency
For the wave in this problem,
f = 4 Hz

So, the speed is

2) a. 2.8 m/s
The speed of the wave on a string is given

where
T is the tension in the string
is the linear mass density
In this problem, we have:
(final tension in the rope, which is twice the initial tension)
--> mass density of the rope
Substituting into the formula, we find

Answer:
Explanation:
Given
Temperature on the hot day 
Gauge Pressure 
When Temperature rises to
on a hot day then
absolute pressure is let say 
Using ideal gas equation we can write

as volume is constant therefore



Gauge Pressure is given by

Heat always transfers from substances with high thermal energy to substances with low thermal until both substances reach the maximum temperature
Explanation:
Loudness of sound is a measure of response of sound to our ear. Loudness of sound is not simply the energy reaching the human ear, but it also tells about the sensitivity of human ear detecting this energy. Loudness of sound is measured in decibel (dB). As energy reaching the ear depends on square of amplitude, loudness of sound depends on various factors namely,
(i) Amplitude of sound waves
(ii) Sensitivity of ear
(iii) Distance from the source of the sound and the listener.
Answer:
The answer to your question is: total energy = 30100.4 J
Explanation:
Kinetic energy (KE) is the energy due to the movement of and object, its units are joules (J)
Data
mass = 1280 kg
speed = 4.92 m/s
Force = 509 N
distance = 28.7 m
Formula

Work = Fd
Process
- Calculate Kinetic energy
- Calculate work
- Add both results
KE = 
KE = 15492.1 J
Work = (509)(28.7)
Work = 14608.3 J
Total = 15492.1 + 14608.3
Total energy = 30100.4 J