Answer:
V₁ = 96.2 mL
Explanation:
Given data:
Initial volume of NH₄OH required = ?
Initial molarity = 15.6 M
Final molarity = 3.00 M
Final volume = 500.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of NH₄OH
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
15.6 M ×V₁ = 3.00 M×500.0 mL
15.6 M ×V₁ = 1500 M.mL
V₁ = 1500 M.mL /15.6 M
V₁ = 96.2 mL
Answer:
24.24 L
Explanation:
Boyle’s law, also called Mariotte’s law, a relation concerning the compression and expansion of a gas at constant temperature.
This empirical relation, formulated by the physicist Robert Boyle in 1662, states that the pressure (p) of a given quantity of gas varies inversely with its volume (v) at constant temperature; i.e., in equation form, pv = k, a constant.
Real gases obey Boyle’s law at sufficiently low pressures, although the product pv generally decreases slightly at higher pressures, where the gas begins to depart from ideal behaviour.
As, PV = k
P₁ V₁ = P₂ V₂
Given P₁ = 101 KPa
V₁ = 6 L
P₂ = 25 kPa
So, V₂ = P₁ V₁ /P₂ = 101 *6/25 = 24.24 L
It is 2.1 x 10^3 because your base number needs to be in between 1 and 10, and the number you are converting is non-decimal, so the exponent is positive. It is 10^3 because you are moving the decimal 3 places to the right
Answer:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.
Explanation:
In liquids, particles are quite close together and move with random motion throughout the container. Particles move rapidly in all directions but collide with each other more frequently than in gases due to shorter distances between particles. With an increase in temperature, the particles move faster as they gain kinetic energy, resulting in increased collision rates and an increased rate of diffusion.