1s^2 2s^2 2p^6 for the Mg2+ ion.
In finding the molarity of a solution, we use the following formula:

What is Molarity?
The number of moles of the solute is calculated by dividing the mass of the solute by its molar mass.
<h3 />
The molar mass of NH4NO3 and (NH4)3PO4 are 80.043 g/mol and 149.0867 g/mol, respectively.




![[NH+4]=0.1596 mol20.0 L=7.98×10−3 M NH+4](https://tex.z-dn.net/?f=%5BNH%2B4%5D%3D0.1596%20mol20.0%20L%3D7.98%C3%9710%E2%88%923%20M%20NH%2B4)
![[PO3−4]=0.0296 mol20.0 L=1.48×10−3 M PO3−4](https://tex.z-dn.net/?f=%5BPO3%E2%88%924%5D%3D0.0296%20mol20.0%20L%3D1.48%C3%9710%E2%88%923%20M%20PO3%E2%88%924)
Therefore,
has a molarity of 
To learn more about Molarity click on the link below:
brainly.com/question/19943363
#SPJ4
Answer:
The particles move faster and are far apart
Explanation:
A substance may exist in three states of matter; solid, liquid and gas.
In the solid state, there is very strong intermolecular forces between the particles of the substance. They can only vibrate or rotate about their mean positions but can not translate.
In the liquid state, the particles of the substance have a greater degree of freedom than in the solid. The magnitude of intermolecular forces is lower than in solids, the molecules can move at low speeds.
In a gas, the molecules are separated from each other with negligible intermolecular interaction hence they move at very high speed.
Therefore, for the water gas particles in the air above the cup; the particles move faster and are far apart.
Answer:
B
The increase in the atomic number