Let us assume that the ring is a size 7 ring, which has a circumference of 54.3 millimeters. Converting this to centimeters, the circumference of the ring is:
54.3 mm = 5.43 cm
Now, we determine the number of gold atoms that will be present in this:
5.43 / 1 x 10⁻⁹
There will be 5.43 x 10⁹ atoms
We now determine the number of moles this is by:
one mole = 6.02 x 10²³ atoms
Moles = 5.43 x 10⁹ / 6.02 x 10²³
Moles = 9.01 x 10⁻¹⁵ moles
The molar mass of gold is 197 g/mol
The mass is 9.01 x 10⁻¹⁵ * 197
The mass of the strand is 1.76 x 10⁻¹² grams
Answer:
See explanation
Explanation:
Tyndall effect refers to the scattering of light in a solution. Tyndall effect occurs when the size of particles in the solution exceeds 1 nm in diameter. Such solutions are actually called false solutions.
In tincture of iodine, the size of particles in solution is less than 1 nm in diameter hence the solution does not exhibit Tyndall effect. Hence, tincture of iodine is a true solution.
Therefore, if the size of particles in solution exceeded 1nm in diameter, Tyndall effect is observed.
<h3><u>Answer</u>;</h3>
A. When a reaction is at chemical equilibrium, a change in the system will cause the system to shift in the direction that will balance the change and help the reaction regain chemical equilibrium.
<h3><u>Explanation</u>;</h3>
- Le Chatelier's principle states that when a change or a "stress" is placed on a system that is at equilibrium, the system will shift in such a way to relieve that change or stress.
- The stresses include; changing the concentration of reactants or products, altering the temperature in the system and changing the pressure of the system.
- Therefore; <u><em>when a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. </em></u>
Answer:
0.158 moles KMnO4
Explanation:
According to the Periodic Table,
K = 39.10 g/mol
Mn = 54.94 g/mol
O = 16.00 g/mol
KMnO4 = 39.10 g/mol + 54.94 g/mol + 4(16.00 g/mol) = 158.04 g/mol
25.0 grams KMnO4 1 mole
----------------------------- x -------------------------- = 0.158 moles KMnO4
158.04 grams
<u>Answer:</u> The volume when the pressure and temperature has changed is 
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
Let us assume:
![P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K](https://tex.z-dn.net/?f=P_1%3D1.20atm%5C%5CV_1%3D795mL%5C%5CT_1%3D116%5EoC%3D%5B116%2B273%5DK%3D389K%5C%5CP_2%3D0.55atm%5C%5CV_2%3D%3FmL%5C%5CT_2%3D75%5EoC%3D%5B75%2B273%5DK%3D348K)
Putting values in above equation, we get:

Hence, the volume when the pressure and temperature has changed is 