Answer:
Explanation:
f = 
T = 120 N
L = 3.00 m
(m/L) = 120 g/cm(100 cm/m / 1000 g/kg) = 12 kg/m
(wow that's massive for a "rope")
f =
)
f =
/6 = 0.527 Hz
This is a completely silly exercise unless this "rope" is in space somewhere as the weight of the rope (353 N on earth) far exceeds the tension applied.
A much more reasonable linear density would be 120 g/m resulting in a frequency of √1000/6 = 5.27 Hz on a rope that weighs only 3.5 N
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
Friction can be reduced by making a surface smooth. It can also be reduced by applying lubricants such as oil and grease
Differential portion of the invertebrate