1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
6

What is the first step in the formation of a protostar?

Physics
1 answer:
Fittoniya [83]3 years ago
4 0

Star formation begins in relatively small molecular clouds called dense cores.[7] Each dense core is initially in balance between self-gravity, which tends to compress the object, and both gas pressure and magnetic pressure, which tend to inflate it. As the dense core accrues mass from its larger, surrounding cloud, self-gravity begins to overwhelm pressure, and collapse begins. Theoretical modeling of an idealized spherical cloud initially supported only by gas pressure indicates that the collapse process spreads from the inside toward the outside.[8] Spectroscopic observations of dense cores that do not yet contain stars indicate that contraction indeed occurs. So far, however, the predicted outward spread of the collapse region has not been observed.[9]

The gas that collapses toward the center of the dense core first builds up a low-mass protostar, and then a protoplanetary disk orbiting the object. As the collapse continues, an increasing amount of gas impacts the disk rather than the star, a consequence of angular momentum conservation. Exactly how material in the disk spirals inward onto the protostar is not yet understood, despite a great deal of theoretical effort. This problem is illustrative of the larger issue of accretion disk theory, which plays a role in much of astrophysics.

Regardless of the details, the outer surface of a protostar consists at least partially of shocked gas that has fallen from the inner edge of the disk. The surface is thus very different from the relatively quiescent photosphere of a pre-main sequence or main-sequence star. Within its deep interior, the protostar has lower temperature than an ordinary star. At its center, hydrogen is not yet undergoing nuclear fusion. Theory predicts, however, that the hydrogen isotope deuterium is undergoing fusion, creating helium-3. The heat from this fusion reaction tends to inflate the protostar, and thereby helps determine the size of the youngest observed pre-main-sequence stars.[11]

The energy generated from ordinary stars comes from the nuclear fusion occurring at their centers. Protostars also generate energy, but it comes from the radiation liberated at the shocks on its surface and on the surface of its surrounding disk. The radiation thus created most traverse the interstellar dust in the surrounding dense core. The dust absorbs all impinging photons and reradiates them at longer wavelengths. Consequently, a protostar is not detectable at optical wavelengths, and cannot be placed in the Hertzsprung-Russell diagram, unlike the more evolved pre-main-sequence stars.

The actual radiation emanating from a protostar is predicted to be in the infrared and millimeter regimes. Point-like sources of such long-wavelength radiation are commonly seen in regions that are obscured by molecular clouds. It is commonly believed that those conventionally labeled as Class 0 or Class I sources are protostars.[12][13] However, there is still no definitive evidence for this identification.

You might be interested in
The electric field strength in the space between two closely spaced parallel disks is 1.0 10^5 N/C. This field is the result of
alex41 [277]

To solve this problem it is necessary to apply the concepts related to the capacitance in the disks, the difference of the potential and the load in the disc.

The capacitance can be expressed in terms of the Area, the permeability constant and the diameter:

C = \frac{\epsilon_0 A}{d}

Where,

\epsilon_0 = Permeability constant

A = Cross-sectional Area

d = Diameter

Potential difference between the two disks,

V = Ed

Where,

E = Electric field

d = diameter

Q = Charge on the disk equal to \rightarrow Q=ne=(3.9*10^9)(1.6*10^{-19})= 6.24*10^{-10}C

Through the value found and the expression given for capacitance and potential, we can define the electric charge as

Q = CV

Q = \frac{\epsilon A}{d}(Ed)

Q = \epsilon_0 AE

Q = \epsilon_0 \pi(\frac{d}{2})^2E

Q = \frac{\epsilon \pi d^2E}{4}

Re-arranging the equation to find the diameter of the disks, the equation will be:

d = \sqrt{\frac{4D}{\epsilon_0 \pi E}}

Replacing,

d = \sqrt{\frac{4(6.24*10^{-10})}{(8.85*10^{-12})\pi(1*10^{5})}}

d = 0.0299m

Therefore the diameter of the disks is 0.03m

8 0
3 years ago
A printed circuit board (PCB) is supported by a chassis that is attached to a vibrating motor. The board is 1.6 mm thick, 200 mm
Vedmedyk [2.9K]

jtejyrkekdkeludmydmumud

5 0
3 years ago
Light would most likely be transmitted through A. A mirror B. A stone C. A leaf D. A window
ohaa [14]
A window is the most transparent object from these, so that is the answer.
7 0
4 years ago
Read 2 more answers
Which of the following is a densit-independent factor
Gnom [1K]
<span><em>Density</em>-dependent <em>factors</em> operate only when the population <em>density</em> reaches a certain level. </span>
3 0
3 years ago
Two particles are located on the x axis. particle 1 has a mass m and is at the origin. particle 2 has a mass 2m and is at x = +l
wlad13 [49]

The solution would be like this for this specific problem:

<span>
The force on m is:</span>

<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] -> 1

The force on 2m is:</span>

<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] -> 2

From (1), you’ll get M = 2mx^2 / L^2 and from (2) you get M = m(L - x)^2 / L^2 

Since the Ms are the same, then 

2mx^2 / L^2 = m(L - x)^2 / L^2 

2x^2 = (L - x)^2 

xsqrt2 = L - x 

x(1 + sqrt2) = L 

x = L / (sqrt2 + 1) From here, we rationalize. 

x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1) 

x = L(sqrt2 - 1) / (2 - 1) 


x = L(sqrt2 - 1) </span>

 

= 0.414L

 

<span>Therefore, the third particle should be located the 0.414L x axis so that the magnitude of the gravitational force on both particle 1 and particle 2 doubles.</span>

8 0
4 years ago
Other questions:
  • A strip of copper metal is riveted to a strip of aluminum. the two metals are then heated. the coefficient of linear expansion o
    12·1 answer
  • What is the density of a rock that has a mass of 10 grams and the volume of 2ml?
    10·1 answer
  • A transformer's secondary coil has twice as many turns as its primary. If the primary is connected to 6 V of DC, how many volts
    15·1 answer
  • Why do land animals including meat eaters depend on soil
    10·1 answer
  • Which of the following best describes magnetic fields? Question 4 options: Magnetic fields must have only positive charges. Magn
    5·2 answers
  • MATHPHYS PLEASE HELP IT SAYS ITS WRONG
    10·2 answers
  • Explain how tangential speed depends on distance.
    10·1 answer
  • Approximately how many Sun's are in the Milky way?
    14·2 answers
  • What are the types of energy?​
    11·1 answer
  • The rubber band contains .......potential energy as it is stretched.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!