F=ma
F=QE = 1.602e-19C*700N/C = 1.1214e-16N
1.1214e-16N = ma = 1.6726e-27kg * a
a = 6.702e10 m/s² along the direction of the field line
Answer:
The correct option is (b).
Explanation:
We need to find the work done to increase the speed of a 1 kg toy car by 5 m/s.
We know that, the work done is equal to the kinetic energy of an object i.e.

So, 12.5 J of work is done to increase the speed of a 1.0 kg toy car by 5.0 m/s.
Answer:
The mass of the ice block is equal to 70.15 kg
Explanation:
The data for this exercise are as follows:
F=90 N
insignificant friction force
x=13 m
t=4.5 s
m=?
applying the equation of rectilinear motion we have:
x = xo + vot + at^2/2
where xo = initial distance =0
vo=initial velocity = 0
a is the acceleration
therefore the equation is:
x = at^2/2
Clearing a:
a=2x/t^2=(2x13)/(4.5^2)=1.283 m/s^2
we use Newton's second law to calculate the mass of the ice block:
F=ma
m=F/a = 90/1.283=70.15 kg
V = 8 * 10^2 km/h = 800km/h
S= 1,8* 10^3 km = 1800km
t = ?
v = S/t
t = S/v
t = 1800km/ 800km/h
t ≈ 2,25h (135min)