1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxTIMURxx [149]
3 years ago
8

May you help me answer this​

Physics
1 answer:
Firdavs [7]3 years ago
7 0

1) See three Kepler laws below

2a) Acceleration is 2.2 m/s^2

2b) Tension in the string: 27.4 N

3a) Kinetic energy is the energy of motion, potential energy is the energy due to the position

3b) The kinetic energy of the object is 2.25 J

Explanation:

1)

There are three Kepler's law of planetary motion:

  1. 1st law: the planets orbit the sun in elliptical orbits, with the Sun located at one of the 2 focii
  2. 2nd law: a segment connecting the Sun with each planet sweeps out equal areas in equal time intervals. A direct consequence of this is that, when a planet is further from the sun, it travels slower, and when it is closer to the sun, it travels faster
  3. 3rd law: the square of the period of revolution of a planet around the sun is directly proportional to the cube of the semi-major axis of its orbit. Mathematically, T^2 \propto r^3, where T is the period of revolution and r is the semi-major axis of the orbit

2a)

To solve the problem, we have to write the equation of motions for each block along the direction parallel to the incline.

For the block on the right, we have:

M g sin \theta - T = Ma (1)

where

Mg sin \theta is the component of the weight of the block parallel to the incline, with

M = 8.0 kg (mass of the block)

g=9.8 m/s^2 (acceleration of gravity)

\theta=35^{\circ}

T = tension in the string

a = acceleration of the block

For the block on the left, we have similarly

T-mg sin \theta = ma (2)

where

m = 3.5 kg (mass of the block)

\theta=35^{\circ}

From (2) we get

T=mg sin \theta + ma

Substituting into (1),

M g sin \theta - mg sin \theta - ma = Ma

Solving for a,

a=\frac{M-m}{M+m}g sin \theta=\frac{8.0-3.5}{8.0+3.5}(9.8)(sin 35^{\circ})=2.2 m/s^2

2b)

The tension in the string can be calculated using the equation

T=mg sin \theta + ma

where

m = 3.5 kg (mass of lighter block)

g=9.8 m/s^2

\theta=35^{\circ}

a=2.2 m/s^2 (acceleration found in part 2)

Substituting,

T=(3.5)(9.8)(sin 35^{\circ}) +(3.5)(2.2)=27.4 N

3a)

The kinetic energy of an object is the energy due to its motion. It is calculated as

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

The potential energy is the energy possessed by an object due to its position in a gravitational field. For an object near the Earth's surface, it is given by

U=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the heigth of the object relative to the ground

3b)

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

For the object in this problem,

m = 500 g = 0.5 kg

v = 3 m/s

Substituting, we find its kinetic energy:

K=\frac{1}{2}(0.5)(3)^2=2.25 J

Learn more about acceleration and forces:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

And about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

You might be interested in
What are the characteristics and phases of the moon
svetoff [14.1K]
Crescent, gibbous, waxing, and waning.
4 0
3 years ago
Is the SI unit of work newton?
Naya [18.7K]

Answer:

Newton is the SI unit for force . Newton is kg m2

7 0
3 years ago
Read 2 more answers
Two workers pull horizontally on a heavy box. but one pulls twice as hard as the other. The larger pull is directed at 21.0° wes
pantera1 [17]

Answer:

The  magnitude of F1 is

|F1|=358.74 \ N

The magnitude of F2 is

|F2|=179.37\ N

And the direction of F2 is

\alpha = 44.214^o

Explanation:

<u>Net Force </u>

Forces are represented as vectors since they have magnitude and direction. The diagram of forces is shown in the figure below.  

The larger pull F1 is directed 21° west of north and is represented with the blue arrow. The other pull F2 is directed to an unspecified direction (red arrow). Since the resultant Ft (black arrow) is pointed North, the second force must be in the first quadrant. We must find out the magnitude and angle of this force.  

Following the diagram, the sum of the vector components in the x-axis of F1 and F2 must be zero:

\displaystyle -2F\ sin21^o+F\ cos\alpha =0

The sum of the vertical components of F1 and F2 must equal the total force Ft

\displaystyle -2F\ cos21^o+F\ sin\alpha =460

Solving for \alpha in the first equation

\displaystyle cos\alpha =\frac{2F\ sin21^o}{F}=2sin21^o

\displaystyle cos\alpha =0.717=>\alpha =44.214^o

\displaystyle F(2cos21^o+sin\alpha)=460

\displaystyle F=\frac{460}{2cos21^o+sin\alpha}

\displaystyle F=\frac{460}{2cos21^o+sin44.214^o}

\displaystyle F=179.37\ N

The  magnitude of F1 is

|F1|=2*F=358.74 \ N

The magnitude of F2 is

|F2|=179.37\ N

And the direction of F2 is

\alpha = 44.214^o

4 0
3 years ago
The Burj Khalifa in Dubai is the world's tallest building. The structure is 828 m (2,716.5 feet) and has more than 160 stories.
Elena L [17]

Answer:

 h = 599.5 m

Explanation:

Given,

height of structure = 828 m

weight of the tourist = 184 lb

                                 = 184 x 0.45359 = 83.43 Kg

Potential energy = 187000 J

PE = m gd

d = \frac{PE}{mg}

d = \frac{187000}{83.43\times 9.81}

h = 228.5 m

Height of the room above the ground.

 h = 828 - 228.5

 h = 599.5 m

Height of the floor above ground is equal to 599.5 m.

4 0
3 years ago
Which of these systems is an oscillator? A. A barrel rolling down the hill B. A child sitting on a swing a skater falling on the
Paladinen [302]

Answer:

Option B:

A child sitting on a swing.

Explanation:

When we hear the word oscillator, a good example is the pendulum bob of a grandfather clock. We can picture the motion to get a perfect understanding of its path of motion and relate it to other systems of motion in our everyday life.

An oscillator is a system that moves in such a way that it reverses its direction after a period of time. It can be seen as a "to-and-fro" motion.

From the options, a child sitting on a swing is the perfect example of an oscillating system because the child will be moving forwards and backwards, alternately reversing the direction of motion with time.

7 0
3 years ago
Other questions:
  • Objects in free fall near the surface of the earth accelerate downward at what rate
    6·2 answers
  • Would a 9-N force applied 2 m from the fulcrum lift the weight. Explain.
    15·1 answer
  • I drop a penny from the top of the tower at the front of Fort Collins High School and it takes 1.85 seconds to hit the ground. C
    7·1 answer
  • Express the number in scientific notation: -8,675,300.0
    15·1 answer
  • How is a net electric charge produced?​
    13·1 answer
  • A plastic circular loop has radius R, and a positive charge q is distributed uniformly around the circumference of the loop. The
    8·1 answer
  • In which direction does a Newton's Third Law reaction force act?
    7·1 answer
  • AYUDA!!!!!
    10·1 answer
  • The unit of area is derived unit why​
    6·2 answers
  • Oysters are filter feeders. They get their food by moving large amounts of water through their bodies and filtering out whatever
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!