Answer: Activation energy
Explanation:
In a chemical reaction, the reactants contains particles which must collide in order for a reaction to occur. The rate of reaction depends on the frequency of effective collision between the reacting particles. Effective collision are those that result in reactions, which when they occur the colliding particles become activated with increased kinetic energy.
This energy must exceed a particular energy barrier for a particular reaction if the reaction must take place. This energy barrier that must be overcome before a reaction takes place is known as the ACTIVATION ENERGY.
To explain further, when two particles or molecules A and B come in contact with each other, for a reaction to take place, they must collide with a sufficient force to break the bond that exists between them. The minimum combined kinetic energy these reactant particles must possess in order for their collision to result in a reaction is called the activation energy.
Answer:
The stronger electrolyte is the HCl
Explanation:
Stronger electrolyte are the ones, that in water, completely dissociates.
HCl(aq) → H⁺(aq) + Cl⁻(aq)
HCl(aq) + H₂O(l) → H₃O⁺ (aq) + Cl⁻(aq)
Both are acids, they bring protons to medium but the hydrochloric completely dissociates.
HF (aq) + H₂O(l) ⇄ H₃O⁺(aq) + F⁻(aq) Ka
In the dissociation of weak electrolytes, they ionize but at the same time they bond again, so the reaction is always kept in equilibrium.
Answer:
Metallic character refers to the level of reactivity of a metal. Non-metallic character relates to the tendency to accept electrons during chemical reactions. Metallic tendency increases going down a group. Non-metallic tendency increases going from left to right across the periodic table.
Explanation: