Answer:
2
Explanation:
As only 2 electrons can present in an orbital, so only 2 electrons in an atom can have this set of quantum numbers.
Answer:
Option (C)
Explanation:
Atoms are the basic structures that are combined to form minerals, which are further accumulated giving rise to the formation of rocks. These atoms plays a significant role in the formation of rock and their significant characteristics.
When atoms are passed through the rock cycle, they are not able to move at the same rate, but they can move at a different rate. When a rock changes from one kind to another, its constituent minerals and atoms also alters, forming a different rock type with variable characteristics and properties.
Thus, the correct answer is option (C).
Answer: A. the chemical change will occur faster in beaker X.
Explanation:
Temperature is one of the factors that affect the rates of chemical reactions. Increase in temperature increases the rates of reaction by increasing the kinetic energy of the reacting particles so that energetic collisions occur and more bonds in the reactants will be broken and; atoms and ions recombine to form new compounds. Beaker X which is at room temperature has higher temperature than beaker Y which is kept in the refrigerator, thus reacting particles in beaker X has more kinetic energy than the ones in beakerA. the chemical change will occur faster in beaker X. Y.
Answer:
= 
Explanation:
Tollens test is carried out to perceive difference between aldehydes and ketones on the basis of their capability to oxidized easily.
when Tollens react with aldehyde (heptanal) , a silver mirror is form on inner side of container.
The reaction between tollens and heptanal is given as
= 
Answer:
26.2g = Mass of water in the calorimeter
Explanation:
The heat absorbed for the water is equal to the heat released for the metal. Based on the equation:
Q = m*C*ΔT
<em>Where Q is heat, m is the mass of the sample, C is specific heat of the material and ΔT is change in temperature</em>
<em />
Replacing we can write:

13.9g * 0.449J/g°C * (54.2°C-15.6°C) = m(H₂O) * 4.184J/g°C * (15.6°C-13.4°C)
240.9J = m(H₂O) * 9.2J/g
<h3>26.2g = Mass of water in the calorimeter</h3>