So basically, the change in color effects the amount of cations in the solution making it a physical change rather than a chemical one, defying the law of conservation of mass! I hope this helped! (The only time the change in color affects the amount of cations is in the Alkaline Earth Metals)
source: college science teacher
Answer:
0.3192 M
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 5.32 mL Molarity of stock solution (M1) = 6 M
Volume of diluted solution (V2) = 100 mL
Molarity of diluted solution (M2) =?
We can obtain the molarity of the diluted solution by using the dilution formula as shown follow:
M1V1 = M2V2
6 × 5.32 = M2 ×100
31.92 = M2 × 100
Divide both side by 100
M2 = 31.92 / 100
M2 = 0.3192 M
Therefore, the molarity of the diluted solution is 0.3192 M.
Percent strength (% w/w) of a solution is defined as the amount of solute present in 100 g of the solution.
Given data:
Mass of the solute, potassium chloride = 62.5 g
Volume of water (solution) = 187.5 ml
We know that the density of water = 1 g/ml
Therefore, the mass corresponding to the given volume of water
= 187.5 ml * 1 g/1 ml = 187.5 g
We have a solution of 62.5 g of potassium chloride in 187.5 g water
Therefore, amount of solute in 100 g of water= 62.5 * 100/187.5 = 33.33
The percentage strength = 33.33 %
<span>during photosynthesis the co2 is converted into sugar
</span><span> 6 carbon compound that immediately splits into 2 molecules of 3-phosphoglycerate.
</span><span>3 CO2 + 9 ATP + 6 NADPH + 6 H+ → C3H6O3-phosphate + 9 ADP + 8Pi + 6 NADP+ + 3 H2O
</span>hope it helps
Answer:
1
Explanation:
There is only one calcium atom because the subscript 3 applies only to the oxygen. Outside of the parentheses, the subscript 2 only applies to the chlorate ion. Therefore, there is only one calcium atom because there are no coefficients and subscripts. (Also drawing it out will help)