I think the correct answer from the choices listed above is option C. The can <span>from the cupboard will lose carbon dioxide more quickly because it is warmer and gases are less soluble in warmer temperatures. </span> Solubility of gases is a strong function of temperature and as well as pressure.
A should be the answer because the more you test an experiment the more data you have to rely on changing the experiment would cause you to have different outcomes making the results different and unreliable so B, C, and D is not going to be the answer Hope this helps
3Na2O(at) + 2Al(NO3)3(aq) —> 6NaNO3(aq) + Al2O3(s)
This is a double replacement reaction and NaNO3 is aqueous because Na is an alkali metal, plus nitrate is in the solution. Both of these are soluble. Al2O3 is not soluble because it does not contain any element that is soluble and is hence the precipitate.
Hope this helped!
The balanced combustion reaction of propane, C₃H₈, is
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
Molar mass of propane: 44 g/mol
Moles of propane = 42 g * (1 mol/44g) = 0.9545 mol propane
Molar mass of oxygen: 32 g/mol
Moles of oxygen = 115 g * (1 mol/32 g) = 3.594 mol oxygen
Moles of oxygen needed to completely react propane:
0.9545 mol propane * (5 mol O₂/1 mol propane) = 4.7725 mol oxygen
Since the available oxygen is only 3.594 moles and propane needs 4.7725 moles, that means oxygen is our limiting reactant. We base the amount of water produced here.
Molar mass of water: 18 g/mol
Mass of water produced = 3.594 mol O₂ * (4 mol H₂O/5 mol O₂) * (18 g/mol)
Mass of water produced = 258.768 grams