Answer:
<h2>18.87 cm³</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question we have

We have the final answer as
<h3>18.87 cm³</h3>
Hope this helps you
Answer:
0.20 moles
Explanation:
The pressure is proportional to the quantity of gas at a given temperature and volume. So, the quantity needs to be increased by a factor of ...
(35 psi)/(29.2 psi) = 175/146 ≈ 1.19863
The fractional increase required is ...
1.19863 -1 = 0.19863
__
The quantity of air currently in the tire is ...
1 mol·519.67°R/(atm·23.6442 L) × (29.2/14.7 atm) × (11.6 L) / (45+459.67)°R
= 1.0035 mol
so we need to add ...
(fraction to add) × (current quantity) = amount to add
0.19863 × 1.0035 mol = 0.1993 mol = amount to add
About 0.20 moles of air must be added to the tire to bring the pressure up.
Answer:
There will be 525.2 grams of K3N produced
Explanation:
Step 1: Data given
Number of moles of potassium oxide ( K2O) = 6 moles
Magnesium nitride (Mg3N) = in excess
Molar mass of K3N = 131.3 g/mol
Step 2: The balanced equation
Mg3N2 + 3K2O → 3MgO + 2K3N
Step 3: Calculate moles of K3N
The limiting reactant is K2O.
For 1 mol Mg3N2 consumed, we need 3 moles of K2O to produce 3 moles of MgO and 2 moles of K3N
For 6 moles K2O we'll have 2/3 * 6 = 4 moles of K3N
Step 4: Calculate mass of K3N
Mass of K3N = moles K3N * molar mass K3N
Mass of K3N = 4 moles * 131.3 g/mol
Mass of K3N = 525.2 grams
There will be 525.2 grams of K3N produced