Answer:
5.3 × 10⁻³ kg
Explanation:
There is some info missing. I think this is the original question.
<em>A chemist adds 135.0 mL of a 0.21 M zinc nitrate (Zn(NO₃)₂) solution to a reaction flask. Calculate the mass in kilograms of zinc nitrate the chemist has added to the flask. Be sure your answer has the correct number of significant digits.</em>
<em />
We have 135.0 mL of a 0.21 M zinc nitrate (Zn(NO₃)₂) solution. The moles of zinc nitrate are:
0.1350 L × 0.21 mol/L = 2.8 × 10⁻² mol
The molar mass of zinc nitrate is 189.36 g/mol. The mass corresponding to 2.8 × 10⁻² moles is:
2.8 × 10⁻² mol × 189.36 g/mol = 5.3 g
1 kilogram is equal to 1000 grams. Then,
5.3 g × (1 kg/1000 g) = 5.3 × 10⁻³ kg
An analogy is a comparison between two things
Example: banana is to yellow as red is to apple OR banana:yellow as red:apple
A metaphor is a figure of speech where a word or phrase is applied and it’s not literal.
Example: it’s raining cats and dogs. It’s not really raining literal cats and dogs. It’s just raining really hard.
Given what we know, we can confirm that the type of van der Waals interactions that occur between molecules of O2, SCl2, and CH4 in liquids of these substances are the presence of <u>London dispersion forces</u>.
<h3>What are London dispersion forces?</h3>
- They are a force of attraction between atoms.
- They are generated by electrostatic attraction.
- These forces are common between atoms in close proximity and occur often when compounds have a symmetrical distribution of atoms.
- They are generated by the formation of temporary dipoles.
Therefore, given the symmetry of the atoms disposition in these compounds and the temporary dipoles generated by the atoms being in close proximity, we can confirm that the van der Waals forces present in each compound are London dispersion forces.
To learn more about van deer Waals forces visit:
brainly.com/question/13201335?referrer=searchResults
Answer:
Mass
Step-by-step explanation:
Usually, you plot the independent variable along the horizontal (x) axis and the dependent variable along the vertical (y) axis.
Marcia's teacher plotted the mass of the sample along the x-axis and volume along the y-axis.
The mass is the independent variable, because that is <em>what the teacher varied</em>.
The volume is the <em>dependent variable</em>, because it <em>depends</em> on the mass.
Sample number is <em>wrong</em>, because it is not a variable.
Substance is <em>wrong</em>, because all samples consist of the same substance.
Density is <em>wrong</em>, because it is constant. It is the slope of the graph.