Answer:
43.2 N
Explanation:
= Wavelength = 0.75 m
f = Frequency = 40 Hz
m = Mass of string = 0.12 kg
L = Length of string = 2.5 m
= Linear density = 
Velocity of wave is given by

The tension in string is given by

The tension in the string is 43.2 N
Answer
Hertzsprung-Russell (HR) diagram is an essential tool used in stellar evolution. In the universe, there are several hundreds of billions of stars. Scientists use the tool, in differentiation, the billions of stars in the world from the sun. In the HR tool, there is plotting of the luminosity or energy output of a star, which is plotted on the X-axis of a graph against the absolute magnitude. The sun's magnitude is an absolute of +48, which, when plotted against its luminosity, helps in setting an apparent variance between the sun and any other star. Additionally, the sun has been identified as the primary star with a very high temperature. Hence the tool can locate the sun from other forms of stars. HR diagrams outline data such as temperature and luminosity or energy. However, star distance from the Erath is not a type of data represented in the charts.
Explanation:
Hope this helped you!
He arranged his periodic table by each elements atomic mass
Answer:
0.2289
Explanation:
Power required to climb= Fv where F is force and v is soeed. We know that F= mg hence Power, P= mgv and substituting 700 kg for m, 9.81 for g and 2.5 m/s for v then
P= 700*9.81*2.5=17167.5 W= 17.1675 kW
To express it as a fraction of 75 kw then 17.1675/75=0.2289 or 22.89%
The Kepler's laws predict the planetary motion, so there are three laws for this, namely:
1. The orbit of a planet is an ellipse with the Sun (the sun is a star!) at one of the two focus.
2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.
So, let's use second law. The Sun sweeps out equal areas during equal intervals of time means that if A = B, the time the planet takes to travel A1A2 is equal to the time the planet takes to travel B1B2, but given that A = 2B, then takes twice the time to travel A1A2 compared to B1B2.