Answer:
3.192 m/s
Explanation:
t = Time taken = 0.900 seconds
u = Initial velocity
v = Final velocity
s = Displacement = 1.1 meters
a = Acceleration due to gravity = 9.81 m/s²
Velocity of the elevator when it snapped is 3.192 m/s
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5
Take the square root of both side
<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556
(1) friction is the force resisting the relative motion of solid surfaces , fluid layers and material elements sliding against each other.
(2) gravity is a science fiction .
(3) Resistance ::: is a property of a conductor by which the passage of current is opposed causing electric energy to be transformed into heat .
(4) viscosity is the quantity that describes a fluid.
(5)
Answer:
1917723.40119 m/s
Explanation:
m = Mass of deuteron =
k = Boltzmann constant =
T = Temperature =
RMS velocity is given by
The RMS velocity of the deutrons is 1917723.40119 m/s
Answer:
Explanation:
1. An ideal ammeter has very small or almost zero resistance. As the resistance is small the maximum current can pass through the ammeter which it can read it.
2. An ideal voltmeter has very large or infinite resistance. As the resistance is very large so the maximum voltage drops across the resistor and gives the accurate reading.