Answer is: 0.102 moles of HCl would react.
Balanced chemical reaction:
2HCl(aq) + Sr(OH)₂ → SrCl₂(aq) + 2H₂O(l).
V(Sr(OH)₂) = 37.1 mL ÷ 1000 mL/L.
V(Sr(OH)₂) = 0.0371 L; volume of the strontium hydroxide solution.
c(Sr(OH)₂) = 0.138 M; molarity of the strontium hydroxide solution.
n(Sr(OH)₂) = c(Sr(OH)₂) · V(Sr(OH)₂).
n(Sr(OH)₂) = 0.0371 L · 0.138 mol/L.
n(Sr(OH)₂) = 0.0051 mol; amount of the strontium hydroxide.
From balanced chemical reaction: n(Sr(OH)₂) : n(HCl) = 1 : 2.
n(HCl) = 2 · n(Sr(OH)₂).
n(HCl) = 2 · 0.0051 mol.
n(HCl) = 0.0102 mol; amount of the hydrochloric acid.
Answer is: because weak acids do not dissociate completely.
The strength of an Arrhenius
acid determines percentage of ionization of acid and the number of H⁺ ions formed. <span>
Strong acids completely ionize in water and give large amount ofhydrogen ions (H</span>⁺), so we use only one arrow, because reaction goes in one direction and there no molecules of acid in solution.
For example hydrochloric acid: HCl(aq) → H⁺(aq) + Cl⁻(aq).
<span>
Weak acid partially ionize in water
and give only a few hydrogen ions (H</span>⁺), in the solution there molecules of acid and ions.
For example cyanide acid: HCN(aq) ⇄ H⁺(aq)
+ CN⁻(aq).