The minerals in hard water react with soap and affect its cleaning capacity. It's still possible to use hard water when washing by using more soap. The additional soap will no longer be affected by the minerals in the water, so they can clean just as effectively, but you'll be wasting more soap this way.
Answer:
15.89grams
Explanation:
The mass of a substance can be calculated from it's mole value by using the formula:
mole = mass/molar mass
According to this question, there are 0.250 moles of copper. Hence, the mass of copper can be calculated as follows:
Molar mass of Cu = 63.55g/mol
0.250 = mass/63.55
mass = 0.250 × 63.55
mass = 15.8875
Mass of Cu in 0.250mol is 15.89grams.
Answer:
Causes the equilibrium to shift to the left, in favor of making more reactants, and K decreases.
Explanation:
Le Châtelier's principle states that if there is a stress in equilibrium, the reaction will shift to restore the equilibrium. An exothermic reaction loses heat for the surroundings, so the equilibrium must be represented as:
Reactants ⇔ Products + Heat
Then, when more heat is added, to restore the equilibrium, the reaction shift to the left ("consuming" heat), in favor of making more reactants.
The equilibrium constant (K) is:
K = [Products]/[Reactants]
So, [Reactants] will increase, and K must decrease.
Answer:
a) 210.3 g/mol
b) 210.2 g/mol
c) 384.5 g/mol
Explanation:
First step we will calculate the molar masses of ; carbon atom, hydrogen atom and oxygen atom in each .
<u> Molar mass of dibenzyl ketone</u>
Molar mass of dibenzyl ketone = ∑ molar masses of atoms in dibenzyl ketone
= carbon( 15 ) = 15 ( 12.0107 ) + oxygen ( 14 ) = 1 ( 15.999 ) + hydrogen(14) =14(1.00784)
= 210.26926 ≈ 210.3 g/mol
<u> Molar mass of benzil</u>
Molar mass of Benzil = ∑ molar masses of atoms in Benzil
= carbon( 14) = 14(12.0107) + oxygen(2) = 2 ( 15.999) + hydrogen(10) =10(1.00784)
= 210.2262 ≈ 210.2 g/mol
<u>Molar mass of 2,3,4,5-tetraphenylcyclopentadienone</u>
Molar mass = ∑ molar masses of atoms
= carbon ( 29) = 29(12.0107) + oxygen (1) = 1( 15.999 ) + hydrogen(20) = 20(1.00784 )
≈ 384.5 g/mol