A scientist would write that number as 1.49 x 10⁸ kilometers .
(Or, if the scientist is in France or the UK, he might write it as 1.49 x 10⁸ kilometres .)
Answer:
EXplained
Explanation:
from conservation of energy
change in potential energy = gain in kinetic energy
so as all he balls are throws from the same height thus the change in potential energy is the same for all the balls thus the gain in kinetic energy is the same for all the balls and as they have the same initial velocity thus the final velocity is the same for all the balls.
Answer:
1st: Theatre History
4th Quarter
Upcoming
Due today
Syllabus
Due Sunday1st: Theatre History
4th Quarter
Upcoming
Due today
Syllabus
Due Sunday1st: Theatre History
4th Quarter
Upcoming
Due today
Syllabus
Due Sunday
Explanation:
1st: Theatre History
4th Quarter
Upcoming
Due today
Syllabus
Due Sunday
This being a perfect collision means no energy is lost during the collision. Because this question asks for speed and not velocity, the speed will be the same because the final energy is the same. The speed after the collision would therefore be 1.27 m/s.
The velocity of the combination of Jackie and the bicycle is 3.328 m/s.
Explanation:
From the given data the constant kinetic energy is 3.6 J. The mass of combination is 0.65 kg. To find the velocity of the combination of Jackie and the bicycle the formula is
KE = 0.5 x mv2.
To find velocity,
V2=ke/(0.5×m)
V=
v= 3.6/(0.5×0.65)
=
v= 3.328 m/s
Hence, the velocity of the combination of Jackie and the bicycle is 3.328m/s.