as well.
1. Correct
Explanation
An inclined plane is a flat surface which lie at an angle, Its one end is higher than the other this inclined plane is used as an aid for raising or lowering a load. Staircase also work in similar manner
2. Correct
Explanation
yes all simple machine have a fulcrum
3. Incorrect
Explanation
when we swim that time our arms and legs 'push' the water due to which water displaced in backward direction so her we applied a positive work on the water. According to Newton's Third Law,same magnitude of work is done by water in opposite direction to push us back on our arms and legs. therefore water also does positive work on us.
4. incorrect
Explanation
The force exerted by a machine on an object is input force
5. Incorrect
Explanation
when the input force is greater than the output force that time machine have mechanical advantage of less than 1.
Answer:
The acceleration of the electron is 1.457 x 10¹⁵ m/s².
Explanation:
Given;
initial velocity of the emitted electron, u = 1.5 x 10⁵ m/s
distance traveled by the electron, d = 0.01 m
final velocity of the electron, v = 5.4 x 10⁶ m/s
The acceleration of the electron is calculated as;
v² = u² + 2ad
(5.4 x 10⁶)² = (1.5 x 10⁵)² + (2 x 0.01)a
(2 x 0.01)a = (5.4 x 10⁶)² - (1.5 x 10⁵)²
(2 x 0.01)a = 2.91375 x 10¹³

Therefore, the acceleration of the electron is 1.457 x 10¹⁵ m/s².
Answer:
The hill should be not less than 0.625 m high
Explanation:
This problem can be solved by using the principle of conservation of mechanical energy. In the absence of friction, the total mechanical energy is conserved. That means that
is constant, being U the potential energy and K the kinetic energy


When the car is in the top of the hill, its speed is 0, but its height h should be enough to produce the needed speed v down the hill.
The Kinetic energy is then, zero. When the car gets enough speed we assume it is achieved at ground level, so the potential energy runs out to zero but the Kinetic is at max. So the initial potential energy is transformed into kinetic energy.

We can solve for h:

The hill should be not less than 0.625 m high
Answer:
force =mass *acceleration
Explanation:
force = 50*2
force =100N