Answer:
The correct answer is "64 J".
Explanation:
The given values are:
Mass,
m = 52 kg
Velocity,
v = 6 m/s
Mechanical energy,
= 1000 J
Now,
The gravitational potential energy will be:
⇒ 




Newton's 2nd law says: Force = (mass) x (acceleration) .
I wrote Force and acceleration in bold letters because
they're both vectors ... they have size and direction.
The equation is saying that the Force and the acceleration
are both in the same direction.
In an Internal Combustion Engine, the fuel is singed in the chamber or vessel. Example: Diesel or Petrol motor utilized as a part of Cars.
The internal engine has its vitality touched off in the barrel, as 99.9% of motors today. In an External Combustion Engine, the inner working fuel is not consumed. Here the liquid is being warmed from an outer source. The fuel is warmed and extended through the interior instrument of the motor bringing about work. Eg. Steam Turbine, Steam motor Trains. An outer burning case is a steam motor where the warming procedure is done in a kettle outside the motor.
The change in gravitational potential energy due to change in position must be the change in it's kinetic energy as the system is isolated! so find out the potential energies of the two different points!
<span>PE=−[G<span>M1</span><span>M2</span>]÷R
</span><span>
Potential energy of a particle due to mass A is not affected by presence of any other mass B !</span>