Answer: 
Explanation:
According to Newton's law of universal gravitation:
Where:
is the module of the force exerted between both bodies
is the universal gravitation constant.
and
are the masses of both bodies.
is the distance between both bodies
In this case we have two situations:
1) Two bags with masses
and
mutually exerting a gravitational attraction
on each other:
(1)
(2)
(3)
2) Two bags with masses
and
mutually exerting a gravitational attraction
on each other (assuming the distance between both bags is the same as situation 1):
(4)
(5)
(6)
Now, if we isolate
from (3):
(7)
Substituting
found in (7) in (6):
(8)
(9)
Simplifying, we finally get the expression for
in terms of
:
Answer:
Efficiency is the percent of work put into a machine by the user (input work) that becomes work done by the machine (output work).
Explanation:
It is a measure of how well a machine reduces friction.
Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity:

Hello!
The best explanation is the new "experimental evidence", which occur with the help of new and improved technology. For this question, I suggest you to answer letter b).
Hugs!
Taking into account the rule of three for the change of units, the mass of the book is 45600 miligrams.
First of all, the rule of three is a mathematical tool that helps you quickly solve proportionality problems.
Having three known values and one unknown, a proportional relationship is established between all of them in order to find the fourth term of the proportion.
If the relationship between the magnitudes is direct (when one magnitude increases, so does the other; or when one magnitude decreases, so does the other), the rule of three is applied as follows, where a, b and c are known values and x is the unknown to calculate:
a → b
c → x
So: 
Being 1 kg equivalent to 1000000 milligrams, In this case the rule of three is applied as follows: if 1 kg equals 1000000 milligrams, 4.56×10⁻² kg equals how many milligrams?
1 kg → 1000000 milligrams
4.56×10⁻² kg → x
So:

<u><em>x=45600 miligrams</em></u>
In summary, the mass of the book is 45600 miligrams.
Learn more: