From britaññica it said time and money. They didn’t have either to switch over from the industrial period and never did. Also from my own person reasoning i think most of the world uses not US customary, so to make stuff more accessible. hope this helps!
Answer:
(a). The ball's centripetal acceleration is 
(b). The magnitude of the net force is 232.9 N.
Explanation:
Given that,
Mass of baseball = 144 g
Speed = 81 mph = 36.2 m/s
Distance = 81 cm
(a). We need top calculate the ball's centripetal acceleration just before it is released
Using formula of centripetal acceleration

Where, v = speed
r = radius
Put the value into the formula



(b). We need to calculate the magnitude of the net force that is acting on the ball just before it is released
Using formula of force

Put the value into the formula


Hence, (a). The ball's centripetal acceleration is 
(b). The magnitude of the net force is 232.9 N.
use consevation of linear momentum
- m1v1+m2v2=(M1+M2)V3
- 281(2.82)+209(-1.72)=(209+281)V2
- 792.42-359.48=490v3
- 432.9=490v3
- V3=0.88m/s
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
Answer:
U = - 4 x 
Explanation:
ΔV = potential difference =
Volts
q = charge on electron =
C
electric potential energy is given as
U = q ΔV = (
) (
)
= - 4 x 