Answer:
The angular acceleration is zero
Explanation:
When an object is in rotational motion, it has a certain angular velocity, which is the rate of displacement of its angular position.
This angular velocity can change or remain constant - this is given by the angular acceleration, which is:

where
is the change in angular velocity
is the time elapsed
Therefore, the angular acceleration is the rate of change of angular velocity.
In this problem, the bicycle rotates at a constant angular velocity of

This means that the change in angular velocity is zero:

And so, that the angular acceleration is zero:

Answer:
Comparison Microscope
Explanation:
The Comparison Microscope allows for comparison between two objects or samples by placing them side by side.
It is primarily used in criminology for ballistics which makes it ideal to find out if bullets, shells, or cartridge cases were fired from a specific weapon.
Answer:
Amplitude.
Explanation:
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In Science, there are two (2) types of wave and these include;
I. Electromagnetic waves: it doesn't require a medium for its propagation and as such can travel through an empty space or vacuum. An example of an electromagnetic wave is light.
II. Mechanical waves: it requires a medium for its propagation and as such can't travel through an empty space or vacuum. An example of a mechanical wave is sound.
An amplitude can be defined as a waveform that's measured from the center line (its origin or equilibrium position) to the bottom of a trough or top of a crest.
Hence, an amplitude is a word that describes the maximum displacement a point moves from its rest position when a wave passes.
On a graph, the vertical axis (y-axis) is the amplitude of a waveform and this simply means that, it's measured vertically.
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.